Answer: motion parallax
Explanation:
Motion parallax refers to a form of depth perception whereby objects that are closer to an individual appears to move at a faster speed than the objects that are far.
Therefore, Kate is riding on a train and notices that the wildflowers by the side of the tracks seem to be moving by much faster than the mountains in the distance is an example of motion parallax.
To solve this, we use the Wien's Displacement Law as shown in the attached picture. First, convert the temperature to Kelvin.
C to F:
C = (F - 32)*5/9
C = (325 - 32)*5/9 = 162.78 °C
C to K:
K = C + 273
K = 162.78 + 273 = 435.78 K
λmax = 2898/435.78 =
<em>6</em><em>.65 μm</em>
The magnitude of vector b is 8.58 Unit.
Since both the vectors a and b are perpendicular to each other, so we can apply the Pythagoras theorem to calculate the magnitude of the vector b.
Applying the Pythagoras theorem
(a-b)^2=a^2+b^2
15^2=12.3^2-b^2
b=8.58 unit
Therefor the magnitude of the vector b is 8.58 unit.
the average kinetic energy of the particles in an object is directly proportional to its TEMPERATURE.
Answer:
Yes, if the system has friction, the final result is affected by the loss of energy.
Explanation:
The result that you are showing is the conservation of mechanical energy between two points in the upper one, the energy is only potential and the lower one is only kinetic.
In the case of some type of friction, the change in energy between the same points is equal to the work of the friction forces
= ΔEm
=
-Em₀
As we can see now there is another quantity and for which the final energy is lower and therefore the final speed would be less than what you found in the case without friction.
=
+ Em₀
Remember that the work of the rubbing force is negative, let's write the work of the rubbing force explicitly, to make it clearer
½ m v² = -fr d + mgh
v = √(-fr d 2/m + 2 gh)
v = √ (2gh - 2fr d/m)
Now it is clear that there is a decrease in the final body speed.
Consequently, if the system has friction, the final result is affected by the loss of energy.