Answer:
The mass is 16 [g]
Explanation:
We have to remember the formula that defines density, which mentions that the density is equal to mass divided by the volume.
![Density = mass / volume\\where:\\density = 2[\frac{g}{cm^{3} } ]\\Volume = 8 [cm^{3}]](https://tex.z-dn.net/?f=Density%20%3D%20mass%20%2F%20volume%5C%5Cwhere%3A%5C%5Cdensity%20%3D%202%5B%5Cfrac%7Bg%7D%7Bcm%5E%7B3%7D%20%7D%20%5D%5C%5CVolume%20%3D%208%20%5Bcm%5E%7B3%7D%5D)
Now we clear the mass:
![mass= density*volume\\mass = 2[\frac{g}{cm^{3} }]*8[cm^{3} ]\\mass = 16 [g]](https://tex.z-dn.net/?f=mass%3D%20density%2Avolume%5C%5Cmass%20%3D%202%5B%5Cfrac%7Bg%7D%7Bcm%5E%7B3%7D%20%7D%5D%2A8%5Bcm%5E%7B3%7D%20%5D%5C%5Cmass%20%3D%2016%20%5Bg%5D)
The approximate speed of sound in dry (0% humidity) air, in meters per second, at temperatures near 0 °C, can be calculated from

Here
Temperature in Celsius
Replacing with our values we have that



Therefore the speed of sound in air at that temperature is 366.1m/s
Explanation:
We know that the relation between volume and density is as follows.
Volume = 
So, V = 
= 
Now, we will calculate the area as follows.
Area = 
= 
= 
Formula to calculate the resistance is as follows.
R = 
= 
= 
Thus, we can conclude that the resistance of given wire is
.
Answer: D
Explanation:
Kinetic energy = 1/2mV^2
From the formula above, we can deduce that kinetic energy is proportional to the square of speed. That is,
K.E = V^2
Graphically, the relationship isn't linear but a positive exponential. Therefore, option D is the correct answer.