Explanation:
Using Ohm's Law and a bit of substitution, we can use voltage divided by current to solve for resistance. Doing that, we'll get 6 Ohm.
A)<span>
dQ = ρ(r) * A * dr = ρ0(1 - r/R) (4πr²)dr = 4π * ρ0(r² -
r³/R) dr
which when integrated from 0 to r is
total charge = 4π * ρ0 (r³/3 + r^4/(4R))
and when r = R our total charge is
total charge = 4π*ρ0(R³/3 + R³/4) = 4π*ρ0*R³/12 = π*ρ0*R³ / 3
and after substituting ρ0 = 3Q / πR³ we have
total charge = Q ◄
B) E = kQ/d²
since the distribution is symmetric spherically
C) dE = k*dq/r² = k*4π*ρ0(r² - r³/R)dr / r² = k*4π*ρ0(1 -
r/R)dr
so
E(r) = k*4π*ρ0*(r - r²/(2R)) from zero to r is
and after substituting for ρ0 is
E(r) = k*4π*3Q(r - r²/(2R)) / πR³ = 12kQ(r/R³ - r²/(2R^4))
which could be expressed other ways.
D) dE/dr = 0 = 12kQ(1/R³ - r/R^4) means that
r = R for a min/max (and we know it's a max since r = 0 is a
min).
<span>E) E = 12kQ(R/R³ - R²/(2R^4)) = 12kQ / 2R² = 6kQ / R² </span></span>
The answer is calcium. I just did it and it was correct
Answer:
The maximum no. of electrons- 
Solution:
As per the question:
Maximum rate of transfer of charge, I = 1.0 C/s
Time, t = 1.0 h = 3600 s
Rate of transfer of charge is current, I
Also,

Q = ne
where
n = no. of electrons
Q = charge in coulomb
I = current
Thus
Q = It
Thus the charge flow in 1. 0 h:

Maximum number of electrons, n is given by:

where
e = charge on an electron = 
Thus

Answer:
Explanation:
The displacement is the distnce of the shopper from the starting point.
Sum of movement along the vertical = 40-20 = 20m
Movement along the horizontal (x direction) = 15.0m
Displacement will be gotten using the pythagoras theorem.
d = √20²+ 15²
d = √400+225
d = √625
d = 25.0m
Hence the shoppers total displacement is 25.0m