1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adoni [48]
3 years ago
15

A sphere is charged with electrons to

Physics
1 answer:
pishuonlain [190]3 years ago
3 0
A sphere is charged with electrons to −9 × 10−6 C. The value given is the total charge of all the electrons present in the sphere. To calculate the number of electrons in the sphere, we divide the the total charge with the charge of one electron.

N = 9 × 10−6 C / 1.6 × 10−19 C
N = 5.6 x 10^13
You might be interested in
What is the amplitude of a wave related to
Vanyuwa [196]

Answer:

intensity because square of the amplitude is proportional to the intensity of the wave

Explanation:

3 0
3 years ago
A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated a
wariber [46]
<h2>Answer:</h2>

0.46Ω

<h2>Explanation:</h2>

The electromotive force (E) in the circuit is related to the terminal voltage(V), of the circuit and the internal resistance (r) of the battery as follows;

E = V + Ir                      --------------------(a)

Where;

I = current flowing through the circuit

But;

V = I x Rₓ                    ---------------------(b)

Where;

Rₓ = effective or total resistance in the circuit.

<em>First, let's calculate the effective resistance in the circuit:</em>

The effective resistance (Rₓ) in the circuit is the one due to the resistances in the two lightbulbs.

Let;

R₁ = resistance in the first bulb

R₂ = resistance in the second bulb

Since the two bulbs are both rated at 4.0W ( at 12.0V), their resistance values (R₁ and R₂) are the same and will be given by the power formula;

P = \frac{V^{2} }{R}

=> R = \frac{V^{2} }{P}             -------------------(ii)

Where;

P = Power of the bulb

V = voltage across the bulb

R = resistance of the bulb

To get R₁, equation (ii) can be written as;

R₁ = \frac{V^{2} }{P}    --------------------------------(iii)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iii) as follows;

R₁ = \frac{12.0^{2} }{4}

R₁ = \frac{144}{4}

R₁ = 36Ω

Following the same approach, to get R₂, equation (ii) can be written as;

R₂ = \frac{V^{2} }{P}    --------------------------------(iv)

Where;

V = 12.0V

P = 4.0W

Substitute these values into equation (iv) as follows;

R₂ = \frac{12.0^{2} }{4}

R₂ = \frac{144}{4}

R₂ = 36Ω

Now, since the bulbs are connected in parallel, the effective resistance (Rₓ) is given by;

\frac{1}{R_{X} } = \frac{1}{R_1} + \frac{1}{R_2}       -----------------(v)

Substitute the values of R₁ and R₂ into equation (v) as follows;

\frac{1}{R_X} = \frac{1}{36} + \frac{1}{36}

\frac{1}{R_X} = \frac{2}{36}

Rₓ = \frac{36}{2}

Rₓ = 18Ω

The effective resistance (Rₓ) is therefore, 18Ω

<em>Now calculate the current I, flowing in the circuit:</em>

Substitute the values of V = 11.7V and Rₓ = 18Ω into equation (b) as follows;

11.7 = I x 18

I = \frac{11.7}{18}

I = 0.65A

<em>Now calculate the battery's internal resistance:</em>

Substitute the values of E = 12.0, V = 11.7V and I = 0.65A  into equation (a) as follows;

12.0 = 11.7 + 0.65r

0.65r = 12.0 - 11.7

0.65r = 0.3

r = \frac{0.3}{0.65}

r = 0.46Ω

Therefore, the internal resistance of the battery is 0.46Ω

5 0
3 years ago
Read 2 more answers
A thin layer of liquid methylene iodide (n = 1.756) is sandwiched between two flat, parallel plates of glass (n = 1.50). What mu
Harrizon [31]

Answer:

t = 96.1 nm

Explanation:

For strong reflection through liquid layer we know that the path difference between two reflected light rays must be integral multiple of wavelength

now we know that the path difference of two reflected light from thin liquid layer is given as

2\mu t - \frac{\lambda}{2} = N\lambda

here we know that

\mu = 1.756

t = thickness of layer

N = 0 (for minimum thickness of layer)

\lambda = 675 nm

now we have

2(1.756) t = \frac{675 nm}{2}

t = 96.1 nm

5 0
3 years ago
A machinist turns the power on to a grinding wheel, at rest at tome t=0 s. the wheel accelerates uniformly for 10 s and reaches
Assoli18 [71]
To convert 2030 rad into rev, divide 2030 by 2pie. So final answer will be 2030/2 pie =323.08 revolutions.

3 0
4 years ago
The eight planets in alphabetical order are Earth, Jupiter, Mars, Mercury, Neptune, Saturn, Uranus, and Venus. Half of them are
dangina [55]
<span>The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars. After an asteroid belt comes the outer planets, Jupiter, Saturn, Uranus and Neptune. The interesting thing is, in some other planetary systems discovered, the gas giants are actually quite close to the sun</span>
3 0
3 years ago
Read 2 more answers
Other questions:
  • Explain all the parts in a complete and closed circuit and how it works.
    13·1 answer
  • Which of the following is an example of a rotating body?
    15·2 answers
  • If you know that the universe is estimated to be 14 billion years old . what is the age of the universe in seconds ???? (knowing
    8·2 answers
  • The magnetic flux that passes through one turn of a 18-turn coil of wire changes to 4.5 wb from 13.0 wb in a time of 0.072 s. th
    13·1 answer
  • In a coal power plant, coal is burned to heat steam, which spins a turbine. What energy conversion is happening in a coal power
    8·2 answers
  • Sound travels fastest through
    9·1 answer
  • "The two equations below express conservation of energy and conservation of mass for water flowing from a circular hole of radiu
    7·1 answer
  • Lvl 2: Select the passage which best describes the motion of the student.
    12·1 answer
  • 1. What makes a compound a base?
    8·1 answer
  • This is the answer for the questions good luck
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!