Answer:
Acceleration will increase.
Explanation:
The relation between force, mass and acceleration according to the Newton's second law of motion is given as:
F = ma
We are given that the driving force on the truck remains constant, so F is constant here. We can rewrite the above equation as:

Since, F is constant, the acceleration of the truck is inversely proportional to the mass.
There is a hole at the bottom of the truck through which the sand is being lost at a constant rate. Since, the sand is being lost, the overall mass of the truck is being reduced.
Since, the acceleration of the truck is inversely proportional to the mass, the reduced mass will result in an increased acceleration.
So, the acceleration of the truck will increase.
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
B. Decreasing surface area of a solid reactant. The more surface area showing, the quicker the reaction rate.