Tranquilizers
Because they are meant to put you at ease which may cause drowsiness and mental clouding
At t =0, the velocity of A is greater than the velocity of B.
We are told in the question that the spacecrafts fly parallel to each other and that for the both spacecrafts, the velocities are described as follows;
A: vA (t) = ť^2 – 5t + 20
B: vB (t) = t^2+ 3t + 10
Given that t = 0 in both cases;
vA (0) = 0^2 – 5(0) + 20
vA = 20 m/s
For vB
vB (0) = 0^2+ 3(0) + 10
vB = 10 m/s
We can see that at t =0, the velocity of A is greater than the velocity of B.
Learn more: brainly.com/question/24857760
Read each question carefully. Show all your work for each part of the question. The parts within the question may not have equal weight. Spacecrafts A and B are flying parallel to each other through space and are next to each other at time t= 0. For the interval 0 <t< 6 s, spacecraft A's velocity v A and spacecraft B's velocity vB as functions of t are given by the equations va (t) = ť^2 – 5t + 20 and VB (t) = t^2+ 3t + 10, respectively, where both velocities are in units of meters per second. At t = 6 s, the spacecrafts both turn off their engines and travel at a constant speed. (a) At t = 0, is the speed of spacecraft A greater than, less than, or equal to the speed of spacecraft B?
Answer:
f>1000Hz and wavelength=0.343 m
Explanation:
We are given that
Frequency of stationary siren,f=1000 Hz
Wavelength of stationary sound,
When a observer is moving towards the siren then the frequency increases.
Therefore,an observer who is moving towards the siren measure a frequency >1000 Hz.
The wavelength depends upon the speed of source.
But we are given that siren is stationary.
Therefore, source is not moving and then the wavelength remains same.
f>1000Hz and wavelength=0.343 m
Explanation:
because the moon has less mass than earth, the force due to gravity at the lunar surface is only about 1/6 that on earthso,the weight of a body on earth is 6×5N =30N
Answer:
4
Explanation:
From the question given above, the following data were obtained:
Effort (E) = 80 lbs
Load (L) = 320 lbs
Mechanical advantage (MA) =?
Mechanical advantage is simply defined as the ratio of load to effort. Mathematically, it is expressed as:
Mechanical advantage = Load / Effort
MA = L / E
With the above formula, we can obtain the mechanical advantage as illustrated below:
Effort (E) = 80 lbs
Load (L) = 320 lbs
Mechanical advantage (MA) =?
MA = L / E
MA = 320 / 80
MA = 4
Thus, the mechanical advantage is 4