1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Darya [45]
3 years ago
8

A bullet 2cm log is fired at 420m/s and passes straight a 10cm thick board exiting at 280m/s

Physics
2 answers:
Sonbull [250]3 years ago
7 0
Solving for the acceleration of the bullet

acceleration = (vf^2 – vi^2) / 2d

acceleration = ((280 m/s)^2 – (420 m/s)^2) / (2 * 0.12 m)

acceleration = (78400 - 176400) / 0.24 m

acceleration = -98000 / 0.24

acceleration = -408333 m/s^2

Solving for contact time with board

t^2 = 2d/a

t^2 = 2 * 0.12 m / 408333 m/s^2

t^2 = 0.24 m / 408333 m/s^2

t^2 = 5.8775558 x 10^-7

t = 0.0007666 s or 767 microseconds


(I was only able to do A and B)
Alexeev081 [22]3 years ago
6 0

Answer:

Explanation:

(a)Solving for the acceleration of the bullet

acceleration = (vf^2 – vi^2) / 2d

acceleration = ((280 m/s)^2 – (420 m/s)^2) / (2 * 0.12 m)

acceleration = (78400 - 176400) / 0.24 m

acceleration = -98000 / 0.24

acceleration = -408333 m/s^2

(a)Solving for contact time with board

t^2 = 2d/a

t^2 = 2 * 0.12 m / 408333 m/s^2

t^2 = 0.24 m / 408333 m/s^2

t^2 = 5.8775558 x 10^-7

t = 0.0007666 s or 767 microseconds

You might be interested in
Tawny notices that Jim has been forgetting to check two forms of
juin [17]
I think the answer is c but I’m not sure
6 0
3 years ago
an object weighing 15 newtons is lifted from the ground to a height of 0.22 meter what is the increase in the object's gravitati
kicyunya [14]
GPE= weight•height= 15 N• 0.22meter= 3.3 Joules
I hope this helps ~~Charlotte~~
5 0
3 years ago
Read 2 more answers
Desde el balcón de un edificio se deja caer una manzana y llega a la planta baja en 5 s. ¿Desde qué piso se dejó caer, si cada p
miv72 [106K]

Answer: 42

Explanation:

I will answer this in English.

We know that the apple needs 5 seconds to reach the ground.

Each floor of the building has a height of 2.88m.

Now, when we drop something, the only force acting on the object is the gravitational one, so the acceleration of the apple is:

a = -g

for the velocity, we integrate the acceleration over time, and as the apple is dropped, we do not have any initial velocity, so we do not have a constant in the integration:

v = -g*t

for the position we integrate again, now we have an initial height H, so the position is:

p = (-g/2)*t^2 + H

now the apple hits the ground when p = 0, so we can solve this equation to find H.

i will use g = 9.8m/s^2

0 = (-4.9m/s^2)*(5s)^2 + H  

H = 122.5 m

now knowing H, we can divide it by the height of a floor in the building and get the number of the floor.

N = 122.5m/2.88m = 42.5

this means that the apple was dropped in the floor 42 (the 0.5 means that the apple was not right where the floor 42 starts, it was dropped around the middle of the floor 42)

5 0
3 years ago
The gravitational force of a star on an orbiting planet 1 is f1. planet 2, which is three times as massive as planet 1 and orbit
Margaret [11]

Let  us consider two bodies having masses m and m' respectively.

Let they are  separated by a distance of r from each other.

As per the Newtons law of gravitation ,the gravitational force between two bodies is given as -  F = G\frac{mm'}{r^{2} }   where G is the gravitational force constant.

From the above we see that F ∝ mm' and F\alpha \frac{1}{r^{2} }

Let the orbital radius of planet  A is r_{1}  = r and mass of planet is m_{1}.

Let the mass of central star is m .

Hence the gravitational force for planet A  is f_{1} =G \frac{m_{1}*m }{r^{2} }

For planet B the orbital radius  r_{2} =2r_{1} and mass m_{2} = 3 m_{1}

Hence the gravitational force f_{2} =G\frac{m m_{2} }{r^{2} }

                                                 f_{2} =G\frac{m*3m_{1} }{[2r_{1}] ^{2} }

                                                 = \frac{3}{4} G\frac{mm_{1} }{r_{1} ^{2} }

Hence the ratio is  \frac{f_{2} }{f_{1} } = \frac{\frac{3}{4}G mm_{1/r_{1} ^2}  }{Gmm_{1}/r_{1} ^2 }

                                      =\frac{3}{4}     [ ans]


                                                 

                           

3 0
3 years ago
Read 2 more answers
When a cannon is fired, what newton law does is it represent?
lesantik [10]

Answer:

hiiii!!!!

Explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • A bug is on the rim of a 78 rev/min, 12 in. diameter record. The record moves from rest to its final angular speed in 2.67 s. Fi
    9·1 answer
  • You are fixing the roof of your house when a hammer breaks loose and slides down. The roof makes an angle of 65o∘ with the horiz
    6·1 answer
  • What is sex And new born baby why connected to women's veins?
    10·1 answer
  • The free-fall acceleration on Mars is 3.7 m/s^2. What length of pendulum has a period of 1.0 s on Earth? What length of pendulum
    10·1 answer
  • 5. Sandor fills a bucket with water and whirls it in a vertical circle to demonstrate that the
    6·1 answer
  • Which of the following factors might be affected by a wildfire? a. food b. shelter c. biodiversity d. all of the above Please se
    14·2 answers
  • The prominent semicircular space above a doorway in a Romanesque church portal is referred to as a ___________ and was often cov
    15·1 answer
  • Could there ever be a situation where a small sports car could have more inertia than a big bus?​
    7·1 answer
  • A basketball rolls down a hill until it comes to a stop in a ditch
    9·2 answers
  • Two positive point charges are 4.9cm apart. If the electric potential energy is 70.0 μJ, what is the magnitude of the force betw
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!