Answer:
At a deceleration of 60g, or 60 times the acceleration due to gravity a person will travel a distance of 0.38 m before coing to a complete stop
Explanation:
The maximum acceleration of the airbag = 60 g, and the duration of the acceleration = 36 ms or 36/1000 s or 0.036 s
To find out how far (in meters) does a person travel in coming to a complete stop in 36 ms at a constant acceleration of 60g
we write out the equation of motion thus.
S = ut + 0.5at²
wgere
S = distance to come to complete stop
u = final velocoty = 0 m/s
a = acceleration = 60g = 60 × 9.81
t = time = 36 ms
as can be seen, the above equation calls up the given variable as a function of the required variable thus
S = 0×0.036 + 0.5×60×9.81×0.036² = 0.38 m
At 60g, a person will travel a distance of 0.38 m before coing to a complete stop
Answer:
v = 7.95 m/s
Explanation:
Given that,
Wavelength of a wave, 
Frequency of a wave, f = 15 Hz
We need to find the speed of the wave. The speed of a wave is given by :

So, the wave move with a speed of 7.95 m/s.
So the best conductor for electricity is silver.
However because silver is so expensive we use copper which is the next best conductor
Answer:

Given:
Mass of the polar bear (m) = 6.8 kg
Speed of the polar bear (v) = 5.0 m/s
To Find:
Kinetic energy of the polar bear (KE)
Explanation:
Formula:

Substituting values of m & v in the equation:





Kinetic energy of the polar bear (KE) = 23002.1 J
Let's break the question into two parts:
1) The force needed in Ramp scenario.
2) The effort force needed in the lever scenario.
1. Ramp Scenario: In an incline, the only component of cart's weight(
mg) that is in the direction of motion is
. Therefore the effort force in this case must be equal or greater than
.
Now we need to find

.

is the angle between the incline of the ramp and the ground.
Since the height is
5m and the length of the ramp is
8m, 
would be
5/8 or 0.625. Now that you have

, mutiple it with
mg.
=> m*g*

= 20 * 10 * 5 / 8. (Taking g = 10 m/s² for simplicity) = 125N
Therefore, the minimum Effort force you would require in this case is
125N.
2. Lever Scenario:
Just apply "moment action" in this case, which is:


= ?

= mg = 20 * 10 = 200N

= 10m

= 1m
Plug-in the values in the above equation:

= 200/10=
20NAs 20N << 125N, the best choice is to use lever.