1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
2 years ago
7

A point charge of 9.00 × 10−9 C is located at the origin of a coordinate system. A positive charge of 3.00 × 10−9 C is brought i

n from infinity to a point such that the electrical potential energy associated with the two charges is 8.09 × 10−7 J.
Physics
1 answer:
dlinn [17]2 years ago
8 0

A point charge is located at the origin of a coordinate system. A positive charge is brought in from infinity to a point. The charges are at distance for given electrical potential energy is 3.34 x  10⁷ m.

<h3>What is electric potential energy?</h3>

The electric potential energy is the work done by a test charge to bring it from infinity to a particular location.

The electric potential energy is given by the relation,

V = kQ/r

where k = 9 x 10⁹ J.m/C ,Q = 3 x 10⁻⁹ C, V =8.09 × 10⁻⁷ J.

Substitute the values into the expression to get the distance between the charges.

8.09 × 10⁻⁷ =  9 x 10⁹ x  3 x 10⁻⁹ / r

r =3.34 x  10⁷ m

Thus, the distance between the charges will be 3.34 x  10⁷ m.

Learn more about  electric potential energy.

brainly.com/question/12645463

#SPJ1

You might be interested in
Problem 4: A uniform flat disk of radius R and mass 2M is pivoted at point P A point mass of 1/2 M is attached to the edge of th
brilliants [131]

From the case we know that:

  1. The moment of inertia Icm of the uniform flat disk witout the point mass is Icm = MR².
  2. The moment of inerta with respect to point P on the disk without the point mass is Ip = 3MR².
  3. The total moment of inertia (of the disk with the point mass with respect to point P) is I total = 5MR².

Please refer to the image below.

We know from the case, that:

m = 2M

r = R

m2 = 1/2M

distance between the center of mass to point P = p = R

Distance of the point mass to point P = d = 2R

We know that the moment of inertia for an uniform flat disk is 1/2mr². Then the moment of inertia for the uniform flat disk is:

Icm = 1/2mr²

Icm = 1/2(2M)(R²)

Icm = MR² ... (i)

Next, we will find the moment of inertia of the disk with respect to point P. We know that point P is positioned at the arc of the disk. Hence:

Ip = Icm + mp²

Ip = MR² + (2M)R²

Ip = 3MR² ... (ii)

Then, the total moment of inertia of the disk with the point mass is:

I total = Ip + I mass

I total = 3MR² + (1/2M)(2R)²

I total = 3MR² + 2MR²

I total = 5MR² ... (iii)

Learn more about Uniform Flat Disk here: brainly.com/question/14595971

#SPJ4

8 0
1 year ago
Consider a variety of colors of visible light (say 400 nm to 700 nm) falling onto a pair of slits.
babymother [125]

Answer:

Explanation:

The relationship between angle and wavelength for maxima and minima in Young's double slit experiment is given by

For constructive interference

d\sin \theta =m\lambda

For Destructive interference

d\sin \theta =(m+\frac{1}{2})\lambda

where \lambda =wavelength

d=slit\ width

m=order of maxima and minima

for second order maxima i.e. m=2

For smallest separation taking \lambda =400 nm, \theta =90^{\circ}

d\sin 90=2\times 400\times 10^{-9}

d=0.8\times 10^{-6}

d=0.8\mu m

   

6 0
3 years ago
The most dangerous thing for a motorcyclist passing parked cars is
jeka94
The main danger is vehicles making u-turns or pulling out without signalling.
6 0
3 years ago
A 3.0-A current is maintained in a simple circuit that consists of a resistor between the terminals of an ideal battery. If the
harina [27]

Answer:

R=2.78\ \Omega

Explanation:

Given that,

The current flowing in the circuit, I = 3 A

The power of the battery, P = 25 W

We need to find the resistance of the battery. We know that the power of the battery is given by the formula as follows :

P=I^2R

Put all the values to find R.

R=\dfrac{P}{I^2}\\\\R=\dfrac{25}{(3)^2}\\\\R=2.78\ \Omega

So, the resistance is equal to 2.78\ \Omega.

7 0
3 years ago
Now, consider the resultant electric field e⃗ net at p. with reference to the coordinate system shown in the previous part, whic
Rzqust [24]
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below are the choices:
only the x component
only the y component
both the x and y components
neither the x nor the y component

The answer is neither the x nor the y component

5 0
3 years ago
Other questions:
  • I need help plz and thank you❤
    11·1 answer
  • A neutral atom of an element has the same number of __________ and ________. Question 6 options: Neutrons and electrons Protons
    11·1 answer
  • A large volume of the solar system's space is occupied by what?
    5·1 answer
  • An aircraft performs a maneuver called an "aileron roll." During this maneuver, the plane turns like a screw as it maintains a s
    10·1 answer
  • Give a real life example in which two objects are moving at a constant speed but have different velocities.
    12·2 answers
  • a lamp hangs from the ceiling at the height of 2.9 m. if the lamp breaks and falls to the floor what is its impact speed
    13·1 answer
  • Easy Guided Online Tutorial A special electronic sensor is embedded in the seat of a car that takes riders around a circular loo
    6·1 answer
  • Everyone experiences a wide range of emotions, but when could they indicate a mental disorder?
    7·1 answer
  • You know that Alfred Wegener’s ideas were not immediately accepted. What evidence was found that convinced his contemporaries (p
    10·1 answer
  • The current in two identical light bulbs connected in series is 0. 25 A. The voltage across both bulbs is 110 V. The resistance
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!