Answer:
1 joule = 0.737 foot-pound
Joule is the unit of work.
1 J = 1 N·m
In SI units
1 J = 1 kg· m/s²
0.737 foot-pound is the amount of work to raise 0.737 pounds one foot or raising one pound to 0.737 ft.
Answer:
Net force required to accelerate the car is 6000 N
Explanation:
Force is calculated by the equation, F = Mass × Acceleration
This is based on Newton's Second Law of Motion which states that the force acting on an object is its mass times the acceleration of the object.
Here, mass = 3000 kg and acceleration = 2 m/s²
⇒ Force = Mass × Acceleration
= 3000 × 2 = 6000 N
⇒ F = 6000 N
⇒ M = 3000 kg
⇒ a = 2 m/s²
Answer:
lunar highlands
Explanation:
Seeing the moon from the earth we can see that some parts are more illuminated than others, these different regions of the moon have been assigned a name , and have different properties.
The brightest parts are called lunar highlands, because they are at a higher elevation than the darkest parts, called lunar marias.
The lunar highlands are seen from the earth a <u>whiter color than the rest of the moon</u> due to its altitude.
Answer:
minimum length of runway is needed for take off 243.16 m
Explanation:
Given the data in the question;
mass of glider = 700 kg
Resisting force = 3700 N one one glider
Total resisting force on both glider = 2 × 3700 N = 7400 N
maximum allowed tension = 12000 N
from the image below, as we consider both gliders as a system
Equation force in x-direction
2ma = T -f
a = T-f / 2m
we substitute
a = (12000 - 7400 ) / (2 × 700 )
a = 4600/1400
a = 3.29 m/s²
Now, let Vf be the final speed and Ui = 0 ( as starts from rest )
Vf² = Ui² + 2as
solve for s
Vf² = 0 + 2as
2as = Vf²
s = Vf² / 2a
given that take of speed for the gliders and the plane is 40 m/s
we substitute
s = (40)² / 2×3.29
s = 1600 / 6.58
s = 243.16 m
Therefore, minimum length of runway is needed for take off 243.16 m