The pressure of water is 7.3851 kPa
<u>Explanation:</u>
Given data,
V = 150×

m = 1 Kg
= 2 MPa
= 40°C
The waters specific volume is calculated:
= V/m
Here, the waters specific volume at initial condition is
, the containers volume is V, waters mass is m.
= 150×
/1
= 0.15
/ Kg
The temperature from super heated water tables used in interpolation method between the lower and upper limit for the specific volume corresponds 0.15
/ Kg and 0.13
/ Kg.
= 350+(400-350) 
= 395.17°C
Hence, the initial temperature is 395.17°C.
The volume is constant in the rigid container.
=
= 0.15
/ Kg
In saturated water labels for
= 40°C.
= 0.001008
/ Kg
= 19.515
/ Kg
The final state is two phase region
<
<
.
In saturated water labels for
= 40°C.
=
= 7.3851 kPa
= 7.3851 kPa
Answer:
200
Explanation:
A size sheets (also known as letter size) are 8.5 inches by 11 inches.
B size sheets (also known as ledger size) are 11 inches by 17 inches.
One B size sheet is twice as large as a A size sheet. So if you have 100 B size sheets and cut each one in half, you'll get 200 A size sheets.
extension lines,sketches,leader lines,dimensions describes all illustrations created by freehand.
Answer:
The given grammar is :
S = T V ;
V = C X
X = , V | ε
T = float | double
C = z | w
1.
Nullable variables are the variables which generate ε ( epsilon ) after one or more steps.
From the given grammar,
Nullable variable is X as it generates ε ( epsilon ) in the production rule : X -> ε.
No other variables generate variable X or ε.
So, only variable X is nullable.
2.
First of nullable variable X is First (X ) = , and ε (epsilon).
L.H.S.
The first of other varibles are :
First (S) = {float, double }
First (T) = {float, double }
First (V) = {z, w}
First (C) = {z, w}
R.H.S.
First (T V ; ) = {float, double }
First ( C X ) = {z, w}
First (, V) = ,
First ( ε ) = ε
First (float) = float
First (double) = double
First (z) = z
First (w) = w
3.
Follow of nullable variable X is Follow (V).
Follow (S) = $
Follow (T) = {z, w}
Follow (V) = ;
Follow (X) = Follow (V) = ;
Follow (C) = , and ;
Explanation:
Based on the percent moisture content of the dried product, the mass of dried casein produced os 852.3 kg.
<h3>What is the mass of casein in wet casein?</h3>
The mass of casein in 1000 Kg of wet casein is 75% 1000 kg = 750 Kg
Mass of water 250 kg
The mass of casein is constant while the moisture content can be changed.
At 12% moisture content;
750 kg = 88%%
100 % = 100 ×750/88 = 852.27 kg
Therefore, the mass of dried casein produced os 852.3 kg.
Learn more about mass at: brainly.com/question/24658038
#SPJ1