One of the methods that are used to separate polymers, aluminium alloys, and steels from one another is the Gravitation Separation method.
One straightforward technique is to run the mixture through a magnet, which will keep the steel particles on the magnet and separate them from the polymer.
What is the Gravitation Separation method?
When it is practicable to separate two components using gravity, i.e., when the combination's constituent parts have different specific weights, gravity separation is a technique used in industry. The components can be in suspension or in a dry granular mixture.
Polymers, Steel and Aluminium alloys can be readily split apart. The technique depends on how the two components are combined. The approach used is gravitational density. Due to the significant difference in relative specific mass values between steel and polymers (which range from 1.0 to 1.5), it is possible to separate them using flotation in a liquid that is safe and has the right density.
Therefore, the Gravitation Separation method is used to separate polymers, aluminium alloys and steels.
To learn more about the Polymer from the given link
brainly.com/question/2494725
#SPJ4
Answer:
165 mm
Explanation:
The mass on the piston will apply a pressure on the oil. This is:
p = f / A
The force is the weight of the mass
f = m * a
Where a in the acceleration of gravity
A is the area of the piston
A = π/4 * D1^2
Then:
p = m * a / (π/4 * D1^2)
The height the oil will raise is the heignt of a colum that would create that same pressure at its base:
p = f / A
The weight of the column is:
f = m * a
The mass of the column is its volume multiplied by its specific gravity
m = V * S
The volume is the base are by the height
V = A * h
Then:
p = A * h * S * a / A
We cancel the areas:
p = h * S * a
Now we equate the pressures form the piston and the pil column:
m * a / (π/4 * D1^2) = h * S * a
We simplify the acceleration of gravity
m / (π/4 * D1^2) = h * S
Rearranging:
h = m / (π/4 * D1^2 * S)
Now, h is the heigth above the interface between the piston and the oil, this is at h1 = 42 mm. The total height is
h2 = h + h1
h2 = h1 + m / (π/4 * D1^2 * S)
h2 = 0.042 + 10 / (π/4 * 0.14^2 * 0.8) = 0.165 m = 165 mm
Answer:
The 5/16 – 24 UNF is stronger because it has more tensile load capacity.
Tensile load capacity for M8 -1.25 = 5670 lb
Tensile load capacity for M8 -1 = 6067 lb
Explanation:
For 5/16 - 18 UNC thread:
D = 0.3125
n = 18
Therefore the tensile load capacity is = 100000 X (0.7854 X (0.3125 - 0.9743/ 18) ^2
= 5243 lb.
Similarly for 5/16 - 24 UNF , only the n value changes to 24
we get the tensile load capacity = 5806.6 lb
Hence the 5/16 – 24 UNF is stronger because it has more tensile load capacity.
For metric Bolts:
We have to consider all values in SI units
Strength = 689 MPa
We get for M8 -1.25:
Tensile load capacity as = 689 X 36.6 = 25223 N = 5670 lb
For M8 -1:
Tensile load capacity as = 689 X 39.167 = 26986 N = 6067lb
Answer:
q₀ = 350,740.2885 N/m
Explanation:
Given

σ = 120 MPa = 120*10⁶ Pa

We can see the pic shown in order to understand the question.
We apply
∑MB = 0 (Counterclockwise is the positive rotation direction)
⇒ - Av*L + (q₀*L/2)*(L/3) = 0
⇒ Av = q₀*L/6 (↑)
Then, we apply

Then, we can get the maximum bending moment as follows

then we get

We get the inertia as follows

We use the formula
σ = M*y/I
⇒ M = σ*I/y
where

If M = Mmax, we have

Answer:
We Mine Limestone. Its used to make cement, toothpaste or paints, soil conditioner, and rip rap stone.
Explanation: