Given buffer:
potassium hydrogen tartrate/dipotassium tartrate (KHC4H4O6/K2C4H4O6 )
[KHC4H4O6] = 0.0451 M
[K2C4H4O6] = 0.028 M
Ka1 = 9.2 *10^-4
Ka2 = 4.31*10^-5
Based on Henderson-Hasselbalch equation;
pH = pKa + log [conjugate base]/[acid]
where pka = -logKa
In this case we will use the ka corresponding to the deprotonation of the second proton i.e. ka2
pH = -log Ka2 + log [K2C4H4O6]/[KHC4H4O6]
= -log (4.31*10^-5) + log [0.0451]/[0.028]
pH = 4.15
Answer:
This means that waves need a medium to propagate, but light waves propagate where no particles are present. ...
Answer:
C
Explanation:
Because nothing is left at the end of the reaction.
The compound which is obviously incorrect is dihydrogen oxide
The formula you need is: heat= specific heat x mass x ΔT
specific heat= 0.46 j/g-C
mass= 100.0 grams
ΔT= 40.2 - 15.0= 25.2C
heat= (0.46) x (100.0) x (25.2)= 1159.2 joules or 1200 joules (rounded off)