Answer:
Pressure Increases
Explanation:
When the temperature of a gas is increased inside a container then the pressure of the gas inside the container increases.
This can be deduced by the Ideal Gas law equation:

where:
P = pressure of the gas
V = volume of the gas
n = no. of moles of gas
R = universal gas constant
temperature of the gas
So,
hence the pressure of the gas will increase while the temperature is increased at a constant volume
Explanation:
It is given that,
The Displacement x of particle moving in one dimension under the action of constant force is related to the time by equation as:

Where,
x is in meters and t is in sec
We know that,
Velocity,

(a) i. t = 2 s

At t = 4 s

(b) Acceleration,

Pu t = 3 s in the above equation
So,

Hence, this is the required solution.
Answer:


Explanation:
m = Mass of proton = 
v = Speed of proton = 0.5c = 
Circumference of the colider is 7 km


Centripetal acceleration is 

Force on protons is 
Answer:
Alpha radiation is the name for the emission of an alpha particle in fact an helium nuclei, beta radiation is the emission of electrons or positrons , and gamma radiation is the term used for the emission of energetic photons.
Explanation:
Answer:
The ballon will brust at
<em>Pmax = 518 Torr ≈ 0.687 Atm </em>
<em />
<em />
Explanation:
Hello!
To solve this problem we are going to use the ideal gass law
PV = nRT
Where n (number of moles) and R are constants (in the present case)
Therefore, we can relate to thermodynamic states with their respective pressure, volume and temperature.
--- (*)
Our initial state is:
P1 = 754 torr
V1 = 3.1 L
T1 = 294 K
If we consider the final state at which the ballon will explode, then:
P2 = Pmax
V2 = Vmax
T2 = 273 K
We also know that the maximum surface area is: 1257 cm^2
If we consider a spherical ballon, we can obtain the maximum radius:

Rmax = 10.001 cm
Therefore, the max volume will be:

Vmax = 4 190.05 cm^3 = 4.19 L
Now, from (*)

Therefore:
Pmax= P1 * (0.687)
That is:
Pmax = 518 Torr