Answer:
Also, as stream depth increases, the hydraulic radius increases thereby making the stream more free flowing. Both of these factors lead to an increase in stream velocity. The increased velocity and the increased cross-sectional area mean that discharge increases.
1). The little projectile is affected by friction all the way through the block.
Friction robs some kinetic energy.
2). The block is affected by friction as it scrapes along the top of the post.
Friction robs some kinetic energy.
3). The block is also affected by friction with the air (air resistance) as it
falls to the ground. Friction robs some kinetic energy.
Answer:
Explanation:
Given
Volume of fixed chamber 
Initial Temperature 
Final Temperature 
Heat Supplied 
From First law of thermodynamics
Change in internal energy of the system is equal to heat added minus work done by the system

as the volume is fixed therefore work

thus 
for mono-atomic gas is 

and 1 mole contains 
thus No of molecules
No of molecules
It is stored in the bonds between atoms
The question is incomplete. Here is the complete question.
Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.
(a) What is the total mass of the three boxes?
(b) What is the mass of each box?
Answer: (a) Total mass = 2384.5kg;
(b) m1 = 915kg;
m2 = 605kg;
m3 = 864.5kg;
Explanation: The image of the boxes is described in the picture below.
(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:




Total mass of the system of boxes is 2384.5kg.
(b) For each mass, analyse each box and make them each a free-body diagram.
<u>For </u>
<u>:</u>
The only force acting On the
box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.


= 915kg
<u>For </u>
<u>:</u>
There are two forces acting on
: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:


= 605kg
<u>For </u>
<u>:</u>


= 864.5kg