When we jump from the truck and accelerate towards the earth surface, the earth also accelerates towards us but it's acceleration is very negligible.
To find the answer, we need to know about the acceleration of earth due to the gravitational attraction.
<h3>What's the gravitational force between the earth and a person?</h3>
- Gravitational attraction force is GMm/r² between the earth and a person.
- M= mass of the earth
m= mass of the person
r= separation between them.
<h3>What's the acceleration of the earth towards the person when he jumps from a truck?</h3>
- According to Newton's second law, Force = M×acceleration
- Acceleration= Force / M
- Here, Force = GMm/r²,
so acceleration of earth= Gm/r²
- As this acceleration is very small, so we can't notice it.
Thus, we can conclude that the earth also accelerates towards us.
Learn more about the gravitational force here:
brainly.com/question/72250
#SPJ4
Answer: hello question b is incomplete attached below is the missing question
a) attached below
b) V = 0.336 ft/s
Explanation:
Elongation ( Xo) = 16/ 7 feet
mass attached to 4-foot spring = 16 pounds
medium has 9/2 times instanteous velocity
<u>a) Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 2 ft/s</u>
The motion is an underdamped motion because the value of β < Wo
Wo = 3.741 s^-1
attached below is a detailed solution of the question
Answer:
its unit is Ohm
Explanation:
Resistance means material which resist the passing current through it and the value of resistance says how much the material is resisting the current and it temperature dependent and the unit is Ohm.
Answer: MR²
is the the moment of inertia of a hoop of radius R and mass M with respect to an axis perpendicular to the hoop and passing through its center
Explanation:
Since in the hoop , all mass elements are situated at the same distance from the centre , the following expression for the moment of inertia can be written as follows.
I = ∫ r² dm
= R²∫ dm
MR²
where M is total mass and R is radius of the hoop .
Answer:
Explanation:
There are two types of collision.
(a) Elastic collision: When there is no loss of energy during the collision, then the collision is said to be elastic collision.
In case of elastic collision, the momentum is conserved, the kinetic energy is conserved and all the forces are conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The kinetic energy of the system before collision = the kinetic energy after the collision
(b) Inelastic collision: When there is some loss of energy during the collision, then the collision is said to be inelastic collision.
In case of inelastic collision, the momentum is conserved, the kinetic energy is not conserved, the total mechanical energy is conserved and all the forces or some of the forces are non conservative in nature.
The momentum of the system before collision = the momentum of system after collision
The total mechanical energy of the system before collision = total mechanical of the system after the collision