Answer:
3 lol
Step-by-step explanation:
Answer:
2.5477 feet
Step-by-step explanation:
Refer the image attached to understand my solution.
BC = height of lamppost.
DE = Julia
AD = shadow of Julia
BD = 2 feet. AD = 5 feet
BA = BD + AD
= 2 + 5 = 7 feet
In ΔABC
tan 20° = 
BC = 7 * tan 20°
BC = 2.5477 feet
SO the height of lamppost = 2.5477 feet
In this problem, we can imagine that all the points
connect to form a triangle. The three point or vertices are located on the
pitcher mount, the home plate and where the outfielder catches the ball. So in
this case we are given two sides of the triangle and the angle in between the
two sides.
<span>With the following conditions, we can use the cosine law
to solve for the unknown 3rd side. The formula is:</span>
c^2 = a^2 + b^2 – 2 a b cos θ
Where,
a = 60.5 ft
b = 195 ft
θ = 32°
Substituting the given values:
c^2 = (60.5)^2 + (195)^2 – 2 (60.5) (195) cos 32
c^2 = 3660.25 + 38025 – 20009.7
c^2 = 21,675.56
c = 147.23 ft
<span>Therefore the outfielder throws the ball at a distance of
147.23 ft towards the home plate.</span>
Answer:
Step-by-step explanation:
Eek! Let's give this a go. Things we know:
acceleration of Bond in free fall is -9.8 m/s/s
velocity of the truck is 25 m/s
displacement Bond will travel when he jumps is -10 m
What we are looking for is the time it will take him to hit the top of the truck, knowing that the truck can travel from one pole to the next in 1 second.
Our displacement equation is
Δx = v₀t + 1/2at²
Filling in we have

Simplifying we get

This is a quadratic that needs to be solved however you personally solve quadratics. When you do that, you find that the times it will take Bond to drop that displacement is either -.37 seconds or 5.47 seconds. Many things in physics can be negative, like velocity and acceleration, but time NEVER will be. So it takes Bond 5.5 seconds to drop to the roof of the moving truck. That means that he needs to jump when the truck is between the 5th and the 6th poles away from him.
Good luck with this!
Cheers!
40
8x5=40
10x4=40
Hope this helps