Answer:
Yes, the calorie can be expressed in SI units
Explanation:
1 calorie (1 cal) is defined as the amount of heat energy that must be supplied to 1 gram of water in order to raise its temperature by 1 degree Celsius (
.
The calorie is not a unit of the International System (SI): the SI unit for the energy is the Joule (J).
However, it is possible to convert energy from calories to Joules, and viceversa. In fact, the conversion factor between the two units is:
1 calorie = 4.184 Joules
So, to convert from calories to Joules we simply multiply by 4.184, while if we want to convert from Joules to calories, we just divide by 4.184.
Answer:
Explanation:
We shall represent each displacement in vector form .
i will represent east , j will represent north .
D₁ = 4.1 west = - 4.1 i
D₂ = 17.3 north = 17.3 j
D₃ = - 1.2 cos65.4 i + 1.2 sin65.4 j
= - .5 i + 1.09 j
Total displacement
= D₁ + D₂ + D₃
= - 4.1 i + 17.3 j - .5 i + 1.09 j
D = - 4.6 i + 18.39 j
magnitude of D
= √ ( 4.6² + 18.39² )
= √ (21.16 + 338.2 )
= √359.36
= 18.95 km .
Final displacement = 18.95 km .
Answer: +2.10V
Explanation:

Using Nernst equation :

![E_{cell}=E^o_{cell}-\frac{0.059}{n}\log [Al^{3+}]^2\times [I^-]^6](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B0.059%7D%7Bn%7D%5Clog%20%5BAl%5E%7B3%2B%7D%5D%5E2%5Ctimes%20%5BI%5E-%5D%5E6)
where,
= standard emf for the cell = +2.20 V
n = number of electrons in oxidation-reduction reaction = 6
= emf of the cell = ?
= concentration = 
= concentration = 
Now put all the given values in the above equation, we get:
![E_{cell}=+2.20-\frac{0.059}{6}\log [5.0\times 10^{-3}]^2\times [0.10]^6](https://tex.z-dn.net/?f=E_%7Bcell%7D%3D%2B2.20-%5Cfrac%7B0.059%7D%7B6%7D%5Clog%20%5B5.0%5Ctimes%2010%5E%7B-3%7D%5D%5E2%5Ctimes%20%5B0.10%5D%5E6)

The standard emf for the cell using the overall cell reaction below is +2.10 V
The decay function is of the form

where
N₀ = initial amount
k = decay constant
t = hours
The material decays by 10% in 95 hours. Therefore

The time for the half life is given by

Answer: The half life is 625 hours