1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
igor_vitrenko [27]
3 years ago
13

Which physical property of the gas molecules gives the measurement of temperature​

Physics
2 answers:
Zolol [24]3 years ago
8 0

The temperature of a gas molecule is measured by the average translational kinetic energy

ira [324]3 years ago
8 0

Answer:

The temperature of a gas is a measure of the average translational kinetic energy of the molecules. In a hot gas, the molecules move faster than in a cold gas; the mass remains the same, but the kinetic energy, and hence the temperature, is greater because of the increased velocity of the molecules

Explanation:

This is also from Go0gle because my explanation would've been an essay long .

but in shorter version if the gas molecules move fast it's hot an if it moves slow its cold hope this helps .

You might be interested in
A -0.00325 C charge q1 is placed 5.62 m from a second charge q2. The first charge is repelled with a 48900 N force. What is the
blagie [28]

Answer: q2 = -0.05286

Explanation:

Given that

Charge q1 = - 0.00325C

Electric force F = 48900N

The electric field strength experienced by the charge will be force per unit charge. That is

E = F/q

Substitute F and q into the formula

E = 48900/0.00325

E = 15046153.85 N/C

The value of the repelled second charge will be achieved by using the formula

E = kq/d^2

Where the value of constant

k = 8.99×10^9Nm^2/C^2

d = 5.62m

Substitutes E, d and k into the formula

15046153.85 = 8.99×10^9q/5.62^2

15046153.85 = 284634186.5q

Make q the subject of formula

q2 = 15046153.85/ 28463416.5

q2 = 0.05286

Since they repelled each other, q2 will be negative. Therefore,

q2 = -0.05286

6 0
3 years ago
What happens in a tug of war if the net forces are balanced and why?
FinnZ [79.3K]

Answer:

Balanced forces are responsible for unchanging motion. Balanced forces are forces where the effect of one force is cancelled out by another. A tug of war, where each team is pulling equally on the rope, is an example of balanced forces. The forces exerted on the rope are equal in size and opposite in direction.

Explanation:

6 0
4 years ago
URGENT!!!! WILL GIVE BRAINLIEST!!!!!! 15 POINTS
Artyom0805 [142]
It's the angle made by the incident ray when it's perpendicular to the surface. (Perpendicular lines are the lines that form a graph or like a 90-degree angle)
3 0
3 years ago
Read 2 more answers
A certain nuclear power plant is capable of producing 1.2×10^9 W of electric power. During operation of the reactor, mass is con
alukav5142 [94]

Answer:

0.00016 kg

Explanation:  

Given:

Power = P = 1.2 × 10⁹ Watts

Power =  work done / Time

efficiency = 0.30

Input power = 1.2 × 10⁹ / 0.30 =  4  × 10⁹ W

Energy =  4  × 10⁹ x 60 x 60 = 1.44 x 10¹³ joules

E = m c² , where c is the speed of light and m is the mass.

⇒ mass = m = E / c²  = (1.44 x 10¹³) / (3 × 10⁸ )²

                                   = 0.00016 kg

6 0
4 years ago
The 2.50 kg cube in the figure has edge lengths d = 6.50 cm and is mounted on an axle
kozerog [31]

Answer:

0.191 s

Explanation:

The distance from the center of the cube to the upper corner is r = d/√2.

When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ.  The new vertical distance from the center to the corner is r cos θ.

Sum of the torques:

∑τ = Iα

Fr cos θ = Iα

(k r sin θ) r cos θ = Iα

kr² sin θ cos θ = Iα

k (d²/2) sin θ cos θ = Iα

For a cube rotating about its center, I = ⅙ md².

k (d²/2) sin θ cos θ = ⅙ md² α

3k sin θ cos θ = mα

3/2 k sin(2θ) = mα

For small values of θ, sin θ ≈ θ.

3/2 k (2θ) = mα

α = (3k/m) θ

d²θ/dt² = (3k/m) θ

For this differential equation, the coefficient is the square of the angular frequency, ω².

ω² = 3k/m

ω = √(3k/m)

The period is:

T = 2π / ω

T = 2π √(m/(3k))

Given m = 2.50 kg and k = 900 N/m:

T = 2π √(2.50 kg / (3 × 900 N/m))

T = 0.191 s

The period is 0.191 seconds.

7 0
3 years ago
Other questions:
  • A 11.8-m-long steel [E = 206 GPa] pipe column has an outside diameter of 202 mm and a wall thickness of 5 mm. The column is supp
    5·1 answer
  • What Do You Already Know about Density? Material Design. Number each material and sort the items in order from lowest (1) to hig
    11·1 answer
  • Consider projectile thrown horizontally at 50 m/s from height of 19.6 meters. The projectile will take ______________ time to hi
    7·1 answer
  • Suppose a skydiver (mass =100kg) is falling towards the earth. When the skydiver is 80 m above the earth he is moving at 60 m/s
    9·1 answer
  • What use do we have for motion diagrams?
    6·1 answer
  • 1. A bicycle initially moving with a velocity
    8·1 answer
  • Que substâncias deveria escolher para diminuir a basicidade ou para diminuir a acidez de uma solução? *
    9·1 answer
  • Sound travels slowest through gases _____________________. Group of answer choices because the molecules of gas are close togeth
    10·1 answer
  • Will mark brainlist<br> THANKS!
    13·1 answer
  • HELP PLS !!! <br><br> Calculate the total current drawn from the 9-volt battery
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!