Answer:
p = 8N/mm2
Explanation:
given data ;
diameter of cylinder = 150 mm
thickness of cylinder = 6 mm
maximum shear stress = 25 MPa
we know that
hoop stress is given as =
axial stress is given as =
maximum shear stress = (hoop stress - axial stress)/2
putting both stress value to get required pressure


t = 6 mm
d = 150 mm
therefore we have pressure
p = 8N/mm2
Answer:
The child will take 5.952 seconds to travel from the top of the hill to the bottom.
Explanation:
Given that the child accelerates uniformly and that both initial (
) and final speeds (
), measured in meters per second, and acceleration (
), measured in meters per square second, are known, we proceed to use the following kinematic equation to determine the time taken to travel from the top of the hill to the bottom (
), measured in seconds, is:
(1)
If we know that
,
and
, then the time taken is:

The child will take 5.952 seconds to travel from the top of the hill to the bottom.
200 joules of work energy are involved. That's all we need to know to answer the question. Once we know that 200 joules of work energy are involved, we don't care what was lifted, or how far, or how long it took, or how many people worked on it, or how much they were paid, or what was the distribution of their gender identities, or the ethnic diversity among the team. or what day each of them celebrates as their sabbath. Any other information besides the 200 joules is only there to distract us, and see whether we're paying attention.
Power = (work or energy) / (time to do the work or move the energy)
Power = (200 joules) / (5 seconds)
<em>Power = 40 watts</em>
Answer:at 21.6 min they were separated by 12 km
Explanation:
We can consider the next diagram
B2------15km/h------->Dock
|
|
B1 at 20km/h
|
|
V
So by the time B1 leaves, being B2 traveling at constant 15km/h and getting to the dock one hour later means it was at 15km from the dock, the other boat, B1 is at a distance at a given time, considering constant speed of 20km/h*t going south, where t is in hours, meanwhile from the dock the B2 is at a distance of (15km-15km/h*t), t=0, when it is 8pm.
Then we have a right triangle and the distance from boat B1 to boat B2, can be measured as the square root of (15-15*t)^2 +(20*t)^2. We are looking for a minimum, then we have to find the derivative with respect to t. This is 5*(25*t-9)/(sqrt(25*t^2-18*t+9)), this derivative is zero at t=9/25=0,36 h = 21.6 min, now to be sure it is a minimum we apply the second derivative criteria that states that if the second derivative at the given critical point is positive it means here we have a minimum, and by calculating the second derivative we find it is 720/(25 t^2 - 18 t + 9)^(3/2) that is positive at t=9/25, then we have our answer. And besides replacing the value of t we get the distance is 12 km.
Answer:
Radiation is the emission or transmission of energy in the form of waves.
Explanation:
.