Answer:
The wave's frequency is <u><em>733 hertz</em></u>.
Explanation:
The wavelength (λ) is the minimum distance between two points of the wave that are in the same state of vibration.
Frequency (f) is the number of vibrations that occur in a unit of time.
The speed of propagation (v) is the speed with which the wave propagates in the middle. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation: <em>v = f * λ</em>.
In this case you know that:
- Wavelength of the sound wave (λ) = 0.450 meters
- Speed of the sound wave (v)= 330 meters per second= 330

Replacing you get:

Then:

f=733.33 hertz≅733 hertz
Finally, <u><em>the wave's frequency is 733 hertz.</em></u>
Answer:
A mechanical wave is a wave that is an oscillation of matter, and therefore transfers energy through a medium.
Explanation:
While waves can move over long distances, the movement of the medium of transmission—the material—is limited. Therefore, the oscillating material does not move far from its initial equilibrium position.
--------------
hope this helped!
✼-answers by brookeangelx
Answer:
133 g
Explanation:
Step 1: Write the balanced equation
2 Al(s) + 3 Br₂(l) ⇒ 2 AlBr₃(s)
Step 2: Calculate the moles corresponding to 15.0 g of Al
The molar mass of aluminum is 26.98 g/mol. The moles corresponding to 15.0 g of Al are:

Step 3: Calculate the moles of Br₂ that react with 0.556 moles of Al
The molar ratio of Al to Br₂ is 2:3. The moles of bromine that react with 0.556 moles of aluminum are:

Step 4: Calculate the mass corresponding to 0.834 moles of Br₂
The molar mass of bromine is 159.81 g/mol. The mass corresponding to 0.834 moles of Br₂ is:

C or a i really cant be sure i need brainlest plz
most likely a