Answer:
From first law of thermodynamics(energy conservation)
Qa= Qr+W
Qa=Heat added to the engine
Qr=heat rejected from the engine
W=work output from the engine
Second law:
It is impossible to construct a heat engine that will deliver the work with out rejecting heat.
In other word ,if engine take heat then it will reject some amount heat and will deliver some amount of work.
1.
QH=6 kW,
QL=4 kW,
W=2 kW
6 KW= 4 + 2 KW
It satisfy the first law.
Here heat is also rejected from the engine that is why it satisfy second law.
2.
QH=6 kW, QL=0 kW, W=6 kW
This satisfy first law but does not satisfy second law because heat rejection is zero.
3.
QH=6 kW , QL=2 kW, W=5 kW
This does not satisfy first as well as second law.Because summation of heat rejection and work can not be greater than heat addition or we can say that energy is not conserve.
4.
QH=6 kW, QL=6 kW, W=0 kW
This satisfy first law only and does not satisfy second law.
Answer:
The hardenability increases with increasing austenite grain size, because the grain boundary area is decreasing. This means that the sites for the nucleation of ferrite and pearlite are being reduced in number, with the result that these transformations are slowed down, and the hardenability is therefore increased.
To solve this problem we will apply the concepts related to real power in 3 phases, which is defined as the product between the phase voltage, the phase current and the power factor (Specifically given by the cosine of the phase angle). First we will find the phase voltage from the given voltage and proceed to find the current by clearing it from the previously mentioned formula. Our values are


Real power in 3 phase

Now the Phase Voltage is,



The current phase would be,

Rearranging,

Replacing,


Therefore the current per phase is 2.26kA
Answer:
Part 1: It would be a straight line, current will be directly proportional to the voltage.
Part 2: The current would taper off and will have negligible increase after the voltage reaches a certain value. Graph attached.
Explanation:
For the first part, voltage and current have a linear relationship as dictated by the Ohm's law.
V=I*R
where V is the voltage, I is the current, and R is the resistance. As the Voltage increase, current is bound to increase too, given that the resistance remains constant.
In the second part, resistance is not constant. As an element heats up, it consumes more current because the free sea of electrons inside are moving more rapidly, disrupting the flow of charge. So, as the voltage increase, the current does increase, but so does the resistance. Leaving less room for the current to increase. This rise in temperature is shown in the graph attached, as current tapers.
spanish
Explanation:
the above question is written in spanish