Answer:
final pressure = 200KPa or 29.138psia
Explanation:
The detailed step by step calculations with appropriate conversion factors applied are as shown in the attachment.
Answer:
A scientific theory is an explanation of an aspect of the natural world and universe that has been repeatedly tested and verified in accordance with the scientific method, using accepted protocols of observation, measurement, and evaluation of results. Where possible, theories are tested under controlled conditions in an experiment. In circumstances not amenable to experimental testing, theories are evaluated through principles of abductive reasoning. Established scientific theories have withstood rigorous scrutiny and embody scientific knowledge.
A scientific theory differs from a scientific fact or scientific law in that a theory explains "why" or "how": a fact is a simple, basic observation, whereas a law is a statement (often a mathematical equation) about a relationship between facts. For example, Newton’s Law of Gravity is a mathematical equation that can be used to predict the attraction between bodies, but it is not a theory to explain how gravity works. Stephen Jay Gould wrote that "...facts and theories are different things, not rungs in a hierarchy of increasing certainty. Facts are the world's data. Theories are structures of ideas that explain and interpret facts.
mark me as brainlist
Answer:
0.008
Explanation:
From the question, the parameters given are:
Velocity V = 5 m/s
Pressure = 10 pa
But pressure = F/A
10 = F/A
F = 10A
Substitute all the parameters into the formula below
Coefficient of viscosity (η) = F × r /[AV]
Where
F = tangential force,
r = distance between layers,
A = Area, and
V = velocity
(η) = 10A × 0.004 /[A × 5]
The A will cancel out
(η) = 10 × 0.004 /[5]
(η) = 0.04 /5
(η) = 0.008
Therefore, the coefficient of viscosity of the fluid is 0.008
Answer:
a) Cr = Co - Fx / D
b) ΔC / Δx = ( CR - Cr ) / ( xR - xRo )
Explanation:
A) Derive an expression for the profile c(r) inside the tissue
F = DΔC / X = D ( Co - Cr ) / X ------ 1
where : F = flux , D = drug diffusion coefficient
X = radial distance between Ro and R
Hence : Cr = Co - Fx / D
B) Express the diffusive flux at outer surface of the balloon
Diffusive flux at outer surface = ΔC / Δx = CR - Cr / xR - xRo