Ok, a couple of things have to be accounted for here. First, since the block is moving relative to the wall we have to use the
kinetic coefficient of friction, 0.40. The second consideration is that since the block is moving at a constant velocity, the acceleration is
zero. This means, by Newton's second Law, that the net force is zero. So the force of gravity must be equal to the friction force of the wall resisting its fall. This friction force is the product of the normal force (which we are seeking) and the kinetic coefficient of friction. We can then set these two forces equal:
A single line indicates a bond between 2 atoms .
Impulse equals to the force into the actual time period of the applied force . thus the force here given is 245.300 N and time is 0.05 thus the impulse is 12.265 Ns
<span>Ball A with a mass of 0.500 kg is moving east at a velocity of 0.800 m/s. It strikes ball B, also of mass 0.500 kg, which is stationary. Ball A glances off B at an angle of 40.0° north of its...Two smart cars depart from the same starting location at the same time and travel different routes to the same destination, arriving at the same time. Explain why the cars travelled different...Given electric flux density D=0.3r^2 ar nc/m^2 in free space a. Find the total charge within the sphere r=3 b. Find the total electric flux leaving the sphere r=4</span>