Answer:
32.59 (nearest hundredth)
Step-by-step explanation:
<u />
<u>Geometric sequence</u>
General form of a geometric sequence: ![a_n=ar^{n-1}](https://tex.z-dn.net/?f=a_n%3Dar%5E%7Bn-1%7D)
(where a is the first term and r is the common ratio)
Given:
![\displaystyle \sum^{20}_{n=1} 4 \left(\dfrac{8}{9}\right)^{n-1}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csum%5E%7B20%7D_%7Bn%3D1%7D%204%20%5Cleft%28%5Cdfrac%7B8%7D%7B9%7D%5Cright%29%5E%7Bn-1%7D)
Therefore:
<u>Sum of the first n terms of a geometric series</u>:
![S_n=\dfrac{a(1-r^n)}{1-r}](https://tex.z-dn.net/?f=S_n%3D%5Cdfrac%7Ba%281-r%5En%29%7D%7B1-r%7D)
To find the sum of the first 20 terms, substitute the found values of a and r, together with n = 20, into the formula:
![\implies S_{20}=\dfrac{4\left(1-\left(\frac{8}{9}\right)^{20}\right)}{1-\left(\frac{8}{9}\right)}](https://tex.z-dn.net/?f=%5Cimplies%20S_%7B20%7D%3D%5Cdfrac%7B4%5Cleft%281-%5Cleft%28%5Cfrac%7B8%7D%7B9%7D%5Cright%29%5E%7B20%7D%5Cright%29%7D%7B1-%5Cleft%28%5Cfrac%7B8%7D%7B9%7D%5Cright%29%7D)
![\implies S_{20}=32.58609013...](https://tex.z-dn.net/?f=%5Cimplies%20S_%7B20%7D%3D32.58609013...)