Answer <u>(assuming it can be in slope-intercept form)</u>:
Step-by-step explanation:
1) First, find the slope of the line by using the slope formula,
. Substitute the x and y values of the given points into the formula and solve:
So, the slope is
.
2) Now, use the point-slope formula
to write the equation of the line in point-slope form. Substitute real values for the
,
, and
in the formula.
Since
represents the slope, substitute
in its place. Since
and
represent the x and y values of one point the line intersects, choose any one of the given points (either one is fine, it will equal the same thing at the end) and substitute its x and y values into the formula as well. (I chose (0, -7), as seen below.) Then, isolate y to put the equation in slope-intercept form and find the following answer:

To get from the first number to the second number the equation is 10x0.5+5=10
Thereafter the equation to get to the next number is 10x1.0+10=20
Thereafter the equation to get the next number is 20x1.5+15=45
Thereafter the equation to get the next number is 45x2.0+20=110
You can notice the pattern, the first number is what the last number was, you increase the second number by 0.5 and you increase the third number by 5.
Following this pattern to find the last number you do 110x2.5+25. This equation results in the number 300. Now time for the last number. You input 300x3.0+30. The answer results in 930. Therefore, the missing number is 930.
Answer:
The answers to the question above are given below:
Step-by-step explanation:
Question: What is a discrete probability distribution?
<u>Answer</u>
A discrete distribution is very important in data research as it shows in tabular form the probabilities that can be found in a list of distribution values and their individual probabilities in counted data. Usually, from the pool of distribution of numbers, the discrete distribution shows the probability of having countable numbers out of the pool.
<u>Question:</u> Choose the correct answer below. A. A discrete probability distribution exclusively lists probabilities. B. A discrete probability distribution lists each possible value a random variable can assume, together with its probability. C. A discrete probability distribution lists each possible value a random variable can assume. D. None of the above
The correct answer is: option B "discrete probability distribution lists each possible value a random variable can assume, together with its probability."
Question: What are the two conditions that determine a probability distribution?
<u>The correct answer is</u>:
1. Since each value may not be zero, each probability must include between 0 and 1.
2. When probabilities are totaled, it must give 1.
So assuming that the total =27
r+b=27
r=-5+3b
r=3b-5
subsitute 3b-5 for r in first equation
3b-5+b=27
4b-5=27
add 5
4b=32
divide by 4
b=8
subsitute
b+r=27
8+r=27
subtracct 8
r=19
red=19
blue=8