<h3>
Answer:</h3>
0.35 M
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial volume as 35.0 mL or 0.035 L
- Initial molarity as 12.0 M
- Final volume is 1.20 L
We are required to determine the final molarity of the solution;
- Dilution involves adding solvent to a solution to make it more dilute which reduces the concentration and increases the solvent while maintaining solute constant.
- Using dilution formula we can determine the final molarity.
M1V1 = M2V2
M2 = M1V1 ÷ V2
= (12.0 M × 0.035 L) ÷ 1.2 L
= 0.35 M
Thus, the final concentration of the solution is 0.35 M
Answer:
See explanation
Explanation:
The reason why the droplets are spherical is the surface area to volume ratio of the falling droplet in a gravitational field. Recall that a sphere has a small surface area to volume ratio.
Between X and Y, one key difference that will define the rate at which the two drops of liquid falls is the viscosity of the fluid. Since the images were not attached, I can not really tell what liquid droplet is more flatter than the other.
However, the liquid with a greater surface tension will form larger droplets and experience a greater air resistance as the droplet falls. Hence the less the surface tension, the flatter the droplets. Cohesive forces pull molecules of a liquid droplets inwards leading to a more spherical shape and reducing the surface area. Surface tension is therefore the reason why liquids form droplets.
Answer:
1M HCl: add 1mol/12M = 83 ml conc. HCl to 1L of water or 8.3ml to 100ml.
2M HCl: add 2mol/12M = 167 ml conc. HCl to 1L of water or 16.7ml to 100ml.
Answer:
Explanation:
10 moles of oxygen atoms.\ \textbf{b)} 91.8 moles of oxygen at
Answer: B
Explanation: to have a control, and many samples to investigate and cover the differences and anseretics.