The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
Answer:
The astronaut can throw the hammer in a direction away from the space station. While he is holding the hammer, the total momentum of the astronaut and hammer is 0 kg • m/s. According to the law of conservation of momentum, the total momentum after he throws the hammer must still be 0 kg • m/s. In order for momentum to be conserved, the astronaut will have to move in the opposite direction of the hammer, which will be toward the space station.
Explanation:
The minimum value of the coefficient of static friction between the block and the slope is 0.53.
<h3>Minimum coefficient of static friction</h3>
Apply Newton's second law of motion;
F - μFs = 0
μFs = F
where;
- μ is coefficient of static friction
- Fs is frictional force
- F is applied force
μ = F/Fs
μ = F/(mgcosθ)
μ = (250)/(50 x 9.8 x cos15)
μ = 0.53
Thus, the minimum value of the coefficient of static friction between the block and the slope is 0.53.
Learn more about coefficient of friction here: brainly.com/question/20241845
#SPJ1
I believe you are right. pH is the concentration of H+. Therefore the more acidic the more H+.