In many ways, the Rutherford model of the atom is the classic model of the atom, even though it's no longer considered an accurate representation. Rutherford's model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths.
This model of an atom was developed by Ernest Rutherford, a New Zealand native working at the University of Manchester in England in the early 1900s. Rutherford spent most of his academic career researching aspects of radioactivity and, in 1908, won the Nobel Prize for his discoveries related to radioactivity. It was after this that Rutherford began developing his model of the atom.
<span>4.200 calories. The formula is rise in heat (H) = the specific heat capacity (c) * rise in heat in degrees Fahrenheit (T) and volume of liquid (m) . H= cTm. Water, the typical comparison, has a specific heat capacity of 1. So to raise the Fahrenheit temperature of 105 grams of water 40 degrees, you multiply 105 * 40 * 1 = 4,200.</span>
Answer:
The dissociation of copper sulfate into ions is an exothermic chemical reaction that releases heat into the surroundings.
Explanation:
Some of the potential energy stored in the solid sample of anhydrous copper sulfate is released as heat as the sample dissolves and dissociates into ions in the water. This is due to the large lattice energy of the crystalline copper sulfate.
hope this helps
Grams of Phosphorus = 4.14 grams
Grams of white compound = 27.8 grams
Grams of Chlorine would be = 27.8 - 4.14 = 23.66 grams
Calculating moles which would be grams / molar mass
Molar mass of P = 30.97 grams / moles; Molar mass of Cl = 35.45 grams / moles
Moles of Phosphorus = 4.14 grams / 30.97 grams / moles = 0.1337 moles
Moles of Chlorine = 23.66 grams / 35.45 grams / moles = 0.6674 moles
Calculating the ratios by dividing with the small entity
P = 0.1337 moles / 0.1337 moles = 1
Cl = 0.6674 moles / 0.1337 moles = 5
So the empirical formula would be PCl5
The magnetic quality of ancient rocks is called paleomagnetism. It <span>is the study of the record of the Earth's magnetic field in rocks, sediment, or archeological materials. Certain minerals in rocks lock-in a record of the direction and intensity of the magnetic field when they form.</span>