Answer:
230.4 N
Explanation:
From the question given above, the following data were obtained:
Charge (q) of each protons = 1.6×10¯¹⁹ C
Distance apart (r) = 1×10¯¹⁵ m
Force (F) =?
NOTE: Electric constant (K) = 9×10⁹ Nm²/C²
The force exerted can be obtained as follow:
F = Kq₁q₂ / r²
F = 9×10⁹ × (1.6×10¯¹⁹)² / (1×10¯¹⁵)²
F = 9×10⁹ × 2.56×10¯³⁸ / 1×10¯³⁰
F = 2.304×10¯²⁸ / 1×10¯³⁰
F = 230.4 N
Therefore, the force exerted is 230.4 N
Given the final velocity (Vf) and the acceleration (a), the distance that should be traveled by the plane is calculated through the equation,
d = (Vf² - Vi²) / 2a
V1 should be zero because the light plane started the motion from rest. Substituting the given values,
d = ((33 m/s)² - 0)) / 2(3 m/s²)
The distance is therefore equal to 181.5 meters.
Velocity =displacement
Change in time
D=72km/hr
Time=20s
But the S.I unit of velocity is m/s so you woul have to change 72km/hr to m/s
Changing 72km to m
1 kilometer=1000meters
Then, 72 kilometers =?
72•1000/1
=72000m
Changing 72hours to seconds
If 1 hour = 3600 seconds
Then 72 hours=?
72•3600/1
=259200 seconds
Velocity =displacement
Change in time
V= 72,000
259,2005
=0.028m/s