THE DEFINITION OF PHYSICAL CHANGE: Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chemical elements or simpler compounds. so the answer is that the form of the sugar is changing in water but if you boiled the water till its all evaporated all that will be left is the sugar
It would most likely be .org or .com :)
Your welcome :D
Answer:
92.49 %
Explanation:
We first calculate the number of moles n of AgBr in 0.7127 g
n = m/M where M = molar mass of AgBr = 187.77 g/mol and m = mass of AgBr formed = 0.7127 g
n = m/M = 0.7127g/187.77 g/mol = 0.0038 mol
Since 1 mol of Bromide ion Br⁻ forms 1 mol AgBr, number of moles of Br⁻ formed = 0.0038 mol and
From n = m/M
m = nM . Where m = mass of Bromide ion precipitate and M = Molar mass of Bromine = 79.904 g/mol
m = 0.0038 mol × 79.904 g/mol = 0.3036 g
% Br in compound = m₁/m₂ × 100%
m₁ = mass of Br in compound = m = 0.3036 g (Since the same amount of Br in the compound is the same amount in the precipitate.)
m₂ = mass of compound = 0.3283 g
% Br in compound = m₁/m₂ × 100% = 0.3036/0.3283 × 100% = 0.9249 × 100% = 92.49 %
Answer:
a. 1.7 × 10⁻⁴ mol·L⁻¹; b. 5.5 × 10⁻⁹ mol·L⁻¹
c. 2.3 × 10⁻⁴ mol·L⁻¹; 5.5 × 10⁻⁸ mol·L⁻¹
Explanation:
a. Silver iodate
Let s = the molar solubility.
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq); Ksp = 3.0 × 10⁻⁸
E/mol·L⁻¹: s s
![K_{sp} =\text{[Ag$^{+}$][IO$_{3}$$^{-}$]} = s\times s = s^{2} = 3.0\times 10^{-8}\\s = \sqrt{3.0\times 10^{-8}} \text{ mol/L} = 1.7 \times 10^{-4} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%20%3D%20s%5Ctimes%20s%20%3D%20%20s%5E%7B2%7D%20%3D%203.0%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%20%3D%20%5Csqrt%7B3.0%5Ctimes%2010%5E%7B-8%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%201.7%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctext%7B%20mol%2FL%7D)
b. Barium sulfate
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq); Ksp = 1.1 × 10⁻¹⁰
I/mol·L⁻¹: 0.02 0
C/mol·L⁻¹: +s +s
E/mol·L⁻¹: 0.02 + s s
![K_{sp} =\text{[Ba$^{2+}$][SO$_{4}$$^{2-}$]} = (0.02 + s) \times s \approx 0.02s = 1.1\times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{0.02} \text{ mol/L} = 5.5 \times 10^{-9} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%20s%20%5Capprox%20%200.02s%20%3D%201.1%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B0.02%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-9%7D%20%5Ctext%7B%20mol%2FL%7D)
c. Using ionic strength and activities
(i) Calculate the ionic strength of 0.02 mol·L⁻¹ Ba(NO₃)₂
The formula for ionic strength is
![\mu = \dfrac{1}{2} \sum_{i} {c_{i}z_{i}^{2}}\\\\\mu = \dfrac{1}{2} (\text{[Ba$^{2+}$]}\cdot (2+)^{2} + \text{[NO$_{3}$$^{-}$]}\times(-1)^{2}) = \dfrac{1}{2} (\text{0.02}\times 4 + \text{0.04}\times1)= \dfrac{1}{2} (0.08 + 0.04)\\\\= \dfrac{1}{2} \times0.12 = 0.06](https://tex.z-dn.net/?f=%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Csum_%7Bi%7D%20%7Bc_%7Bi%7Dz_%7Bi%7D%5E%7B2%7D%7D%5C%5C%5C%5C%5Cmu%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%7D%5Ccdot%20%282%2B%29%5E%7B2%7D%20%2B%20%5Ctext%7B%5BNO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%7D%5Ctimes%28-1%29%5E%7B2%7D%29%20%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%28%5Ctext%7B0.02%7D%5Ctimes%204%20%2B%20%5Ctext%7B0.04%7D%5Ctimes1%29%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%280.08%20%2B%200.04%29%5C%5C%5C%5C%3D%20%5Cdfrac%7B1%7D%7B2%7D%20%5Ctimes0.12%20%3D%200.06)
(ii) Silver iodate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
AgIO₃(s) ⇌ Ag⁺(aq) + IO₃⁻(aq)
![K_{sp} =\text{[Ag$^{+}$]$\gamma_{Ag^{+}}$[IO$_{3}$$^{-}$]$\gamma_{IO_{3}^{-}}$} = s\times0.75\times s \times 0.75 =0.56s^{2}= 3.0 \times 10^{-8}\\s^{2} = \dfrac{3.0 \times 10^{-8}}{0.56} = 5.3 \times 10^{-8}\\\\s =2.3 \times 10^{-4}\text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BAg%24%5E%7B%2B%7D%24%5D%24%5Cgamma_%7BAg%5E%7B%2B%7D%7D%24%5BIO%24_%7B3%7D%24%24%5E%7B-%7D%24%5D%24%5Cgamma_%7BIO_%7B3%7D%5E%7B-%7D%7D%24%7D%20%3D%20s%5Ctimes0.75%5Ctimes%20s%20%5Ctimes%200.75%20%3D0.56s%5E%7B2%7D%3D%203.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%5E%7B2%7D%20%3D%20%5Cdfrac%7B3.0%20%5Ctimes%2010%5E%7B-8%7D%7D%7B0.56%7D%20%3D%205.3%20%5Ctimes%2010%5E%7B-8%7D%5C%5C%5C%5Cs%20%3D2.3%20%5Ctimes%2010%5E%7B-4%7D%5Ctext%7B%20mol%2FL%7D)
(iii) Barium sulfate
a. Calculate the activity coefficients of the ions

b. Calculate the solubility
BaSO₄(s) ⇌ Ba²⁺(aq) + SO₄²⁻(aq
![K_{sp} =\text{[Ba$^{2+}$]$\gamma_{ Ba^{2+}}$[SO$_{4}$$^{2-}$]$\gamma_{ SO_{4}^{2-}}$} = (0.02 + s) \times 0.32\times s\times 0.32 \approx 0.02\times0.10s\\2.0\times 10^{-3}s = 1.1 \times 10^{-10}\\s = \dfrac{1.1\times 10^{-10}}{2.0 \times 10^{-3}} \text{ mol/L} = 5.5 \times 10^{-8} \text{ mol/L}](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%5Ctext%7B%5BBa%24%5E%7B2%2B%7D%24%5D%24%5Cgamma_%7B%20Ba%5E%7B2%2B%7D%7D%24%5BSO%24_%7B4%7D%24%24%5E%7B2-%7D%24%5D%24%5Cgamma_%7B%20SO_%7B4%7D%5E%7B2-%7D%7D%24%7D%20%3D%20%280.02%20%2B%20s%29%20%5Ctimes%200.32%5Ctimes%20s%5Ctimes%200.32%20%5Capprox%20%200.02%5Ctimes0.10s%5C%5C2.0%5Ctimes%2010%5E%7B-3%7Ds%20%3D%201.1%20%5Ctimes%2010%5E%7B-10%7D%5C%5Cs%20%3D%20%5Cdfrac%7B1.1%5Ctimes%2010%5E%7B-10%7D%7D%7B2.0%20%5Ctimes%2010%5E%7B-3%7D%7D%20%5Ctext%7B%20mol%2FL%7D%20%3D%205.5%20%5Ctimes%2010%5E%7B-8%7D%20%5Ctext%7B%20mol%2FL%7D)