We can calculate for temperature by assuming the equation
for ideal gas law:
P V = n R T
Where,
P = pressure = 1.80 atm
V = volume = 18.2 L
n = number of moles = 1.20 moles
R = gas constant = 0.08205746 L atm / mol K
Substituting to the given equation:
T = P V / n R
T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm /
mol K)
T = 332.70 K
We can convert K unit to ˚C unit by subtracting 273.15
to Kelvin, therefore
T = 59.55 ˚<span>C</span>
Answer:
Correct answer is (D). as a weak acid it can cross the membrane when in its uncharged form.
Explanation:
Aspirin (acetylsalicylic acid, ASA) is an analgesic and anti-inflammatory agent use in the treatment of gentle to moderate pain, inflammation and fever. It is absorb in the stomach and intestine in an unchanged form.
Answer:
After the transfer the pressure inside the 20 L vessel is 0.6 atm.
Explanation:
Considering O2 as an ideal gas, it is at an initial state (1) with V1 = 3L and P1 = 4 atm. And a final state (2) with V2 = 20L. The temperature remain constant at all the process, thus here applies the Boyle-Mariotte law. This law establishes that at a constant temperature an ideal gas the relationship between pressure and volume remain constant at all time:

Therefore, for this problem the step by step explanation is:

Clearing P2 and replacing

4 In the open chain, 5 in the cyclic. Just like glucose.
Answer is: the missing pressure is 1088.66 mmHg.
Gay-Lussac's Law states that the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 960 mmHg; pressure of the gas.
T₁ = 100°C + 273.15.
T₁ = 373.15 K; temperature of the gas.
T₂ = 150°C + 273.15.
T₂ = 423.15 K.
p₂ = p₁T₂/T₁.
p₂ = 960 mmHg · 423.15 K / 373.15 K.
p₂ = 1088.66 mmHg.