Answer:
ωB = 300 rad/s
ωC = 600 rad/s
Explanation:
The linear velocity of the belt is the same at pulley A as it is at pulley D.
vA = vD
ωA rA = ωD rD
ωD = (rA / rD) ωA
Pulley B has the same angular velocity as pulley D.
ωB = ωD
The linear velocity of the belt is the same at pulley B as it is at pulley C.
vB = vC
ωB rB = ωC rC
ωC = (rB / rC) ωB
Given:
ω₀A = 40 rad/s
αA = 20 rad/s²
t = 3 s
Find: ωA
ω = αt + ω₀
ωA = (20 rad/s²) (3 s) + 40 rad/s
ωA = 100 rad/s
ωD = (rA / rD) ωA = (75 mm / 25 mm) (100 rad/s) = 300 rad/s
ωB = ωD = 300 rad/s
ωC = (rB / rC) ωB = (100 mm / 50 mm) (300 rad/s) = 600 rad/s
Answer:
The train is moving with a speed of 57.6 m/s.
Explanation:
Given that,
Distance of observer from the road, d = 40 m (due south)
Velocity of the train, v = 60 m/s (due east)
So,

t is time
Net displacement is given by :

Differentiating above equation wrt t as :

Put t = 4 s

So, the train is moving with a speed of 57.6 m/s.