Meselson and Stahl
<u>Explanation:</u>
<u></u>
The classic experiment that supported the semiconservative model of dna replication was performed by Matthew Meselson and Franklin W. Stahl. In this model, the two strands of DNA unwind from each other, and each acts as a template for synthesis of a new, complementary strand. This results in two DNA molecules with one original strand and one new strand. They used E. coli bacteria as a model system.
Answer:
Explanation:
Magnets are of two major forms namely the permanent magnet and the temporary magnets. Temporary magnets magnetizes and demagnetize easily while permanent magnets does not magnetizes and demagnetize easily.
This permanents magnets are applicable in loudspeakers, generators, induction motor etc.
To increase the
The following will tend to increase the magnetic force acting on the rotor in an induction motor.
1. Increasing the strength of the bar magnet. Increase in strength of the magnet will lead to increase in the magnetic force acting on the rotor.
2. Increase in the magnetic line of force also known as the magnetic flux around the magnet will also increase the magnetic force acting on the rotor.
Answer:
Explanation:
This is a simple gravitational force problem using the equation:
where F is the gravitational force, G is the universal gravitational constant, the m's are the masses of the2 objects, and r is the distance between the centers of the masses. I am going to state G to 3 sig fig's so that is the number of sig fig's we will have in our answer. If we are solving for the gravitational force, we can fill in everything else where it goes. Keep in mind that I am NOT rounding until the very end, even when I show some simplification before the final answer.
Filling in:
I'm going to do the math on the top and then on the bottom and divide at the end.
and now when I divide I will express my answer to the correct number of sig dig's:
6.45 × 10¹⁶ N
The angle of inclination is calculated using sin
function,
sin θ = 5 m / 20 m = 0.25
θ = 14.4775°
<span>The net force exerted is then calculated:
F net = m g sin θ = 20 * 9.8 * 0.25 </span>
F net = 49N
<span>Work is product of net force and distance:
W = F net * d = 49 * 20 </span>
<span>Work = 980 J </span>
Your answer is 8. You add 2 + 1 + 5.3 to get 8.3. You round down to 8 because of the sig fig rules.