We can use the ideal gas law equation to find the pressure
PV = nRTwhere
P - pressure
V - volume - 2.6 x 10⁻³ m³
n - number of moles - 0.44 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values into the equation,
P x 2.6 x 10⁻³ m³ = 0.44 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
P = 419 281.41 Pa
101 325 Pa is equivalent to 1 atm
Therefore 419 281.41 Pa - 1/ 101 325 x 419 281.41 = 4.13 atm
Pressure is 4.13 atm
Answer:
The intermolecular forces between the solute and solvent.
Explanation:
When you are heating a solvent, the intermolecular forces are reduced because the distances between molecules are large. Thus, in a solution where solvent is hot the intermolecular forces between solute and solvent are lower than those solutions where solvent is in room temperature.
The covalent bonds do not change because this mean a chemical reaction that doesn't occur in a solution.
Usually solid solutes melts in a higher temperature than boiling point in solvents. Thus, a compound normally doesn't melt in a hot solvent.
I hope it helps!
Answer:
You have read that EM waves can interact with a material medium in
the same ways that mechanical waves do. Three forms of interaction
play an especially important role in how people see light. One form is
reflection. Most things are visible because they reflect light. The two
other forms of interaction are transmission and absorption.
Transmission is the passage of an EM wave
through a medium. If the light reflected from objects did not pass
through the air, windows, or most of the eye, we could not see the
objects. Absorption is the disappearance of an
EM wave into the medium. Absorption affects how things look, because
it limits the light available to be reflected or transmitted.
Metallic character decreases as the the periodic table goes from left to right