<span>Of all planets in our solar system Jupiter has the greatest gravitational "Force as it is heaviest Planet in the solar system"
Hope this helps!</span>
Answer with Explanation:
We are given that
A=3i-3j m
B=i-4 j m
C=-2i+5j m
a.


Compare with the vector r=xi+yj
We get x=2 and y=-2
Magnitude=
units
By using the formula 
Direction:
By using the formula
Direction of D:
b.E=-A-B+C


units
Direction of E=
Answer:
7. free fall -- h. 9.8m/s^2
3. Velocity -- x. 60 km/hr west
6. Acceleration -- d. change in velocity/time
8. Centrifugal -- s. towards the centre
13. Work done --w. Force * displacement
5. Uniform circular motion --j. spin cycle in washer
18. Power -- r. kW an hour
7. g -- a. 10N
hope this helps
Answer:
Height above a surface
Explanation:
Gravitational potential energy is the energy which an object possesses due to its position above a surface.
It is also the amount of work a force has to do in order to bring an object from a particular position to a point of reference.
It is given mathematically as:
P. E. = m*g*h
where m = mass of the body
g = acceleration due to gravity
h = height above a surface
m*g represents the weight of the object.
Hence, Gravitational potential energy is the product of an object's weight and its height above a surface/reference point.