Chemical reactions can be identified when there is a change in color, energy is produced, change in odor, or if new substance forms.
Answer:
2. The metal would lose one electrons and the non metal would gain one electrons
Explanation:
An atom of a certain element reacts with the atoms of other elements in order to fullfill its outermost shell (called valence shell).
We notice the following:
- The elements in Group 1 (which are metals) have only 1 electron in their valence shell
- The elements in Group 17 (which are non-metals) have 1 vacancy (lack of electron) in their valence shell
This means that in order for both an atom of group 1 and an atom of group 17 to fullfill the valence shell, they have to:
- The atom in group 1 has to give away its only electron of the valence shell
- The atom in group 17 has to gain one electron in order to fullfill the shell
Therefore, the correct option is
2. The metal would lose one electrons and the non metal would gain one electrons
Answer:
For these problems, we need to compare the theoretical yield that we'd get from performing stoichiometry to the actual yield stated in the problem. % yield is the actual yield/theoretical yield x 100%
Cu + 2 AgNO₠→ Cu(NOâ‚)â‚‚ + 2 Ag ==> each mole of copper yields two moles of silver
12.7-g Cu x ( 1 mol Cu /63.5-g Cu) x ( 2 mol Ag / 1 mol Cu) x (108-g Ag / 1 mol Ag) = 43.2-g Ag. This is the theoretical yield. Now, since we got 38.1-g Ag our % yield is:
38.1-g/43.2-g x 100% = 88.2%
Explanation:
Answer:
0.808 M
Explanation:
Using Raoult's Law

where:
= vapor pressure of sea water( solution) = 23.09 mmHg
= vapor pressure of pure water (solute) = 23.76 mmHg
= mole fraction of water
∴






------ equation (1)
------ equation (2)
where;
number of moles of sea water
number of moles of pure water
equating above equation 1 and 2; we have :



NOW, Molarity = 



As we assume that the sea water contains only NaCl, if NaCl dissociates to Na⁺ and Cl⁻; we have 