Answer:
Kc = 0.5951 (4 sig. figs.)
Explanation:
For A + B ⇄ C + D at standard thermodynamic conditions (298K, 1atm)
ΔG = ΔG° + R·T·lnQ => 0 = ΔG° + R·T·lnKc => ΔG° = - R·T·lnKc
=> lnKc = - ΔG°/R·T
ΔG° = +12.86 Kj/mol
R = 8.314 Kj/mol·K
T = 298K
lnKc = - (+12.86Kj) / (8.314Kj/mol·K)(298K) = - 0.519 mol⁻¹
Kc = e⁻⁰°⁵¹⁹ mol⁻¹ = 0.5957 mol⁻¹ (4 sig. figs.)
Answer:
See Explanation
Explanation:
Given that;
N/No = (1/2)^t/t1/2
Where;
No = amount of radioactive isotope originally present
N = A mount of radioactive isotope present at time t
t = time taken
t1/2 = half life
N/1000=(1/2)^3/6
N/1000=(1/2)^0.5
N = (1/2)^0.5 * 1000
N= 707 unstable nuclei
Since the value of the initial activity of the radioactive material was not given, the activity of the radioactive material after three months is given by;
Decay constant = 0.693/t1/2 = 0.693/6 months = 0.1155 month^-1
Hence;
A=Aoe^-kt
Where;
A = Activity after a time t
Ao = initial activity
k = decay constant
t = time taken
A = Aoe^-3 *0.1155
A=Aoe^-0.3465
Stirring this is because the three elements are factors affecting dissolving of a solvent. Eg temprature affects in hotness or coldness, Particle size affects whether it is big or small while quantity of soluble affects by the amount
<span>A chemist adds 155.0ml of a 4.10 X 10^-5 mmol/L of a zinc oxalate (ZnC2O4)solution to a reaction flask. Calculate the mass in micrograms of zinc oxalate the chemist has added to the flask.
1mmol = 10^-3 mol
Therefore 4.10*10^-5mmol = 4.10*10^-8mol
molar mass ZnC2O4 = 65.39+(2*12.011)+(4*15.99) = 153.372g/mol
You have 4.10*10^-8 mol/litre =153.372 * 4.10*10^-8 = 6.29*10^-6 grams / litre (* see below)
But you have 155ml. Mass of ZnC2O4 = 155/1000*6.29*10^-6 g
Mass is = 9.75*10^-7 grams
1µg = 10^-6 g
You then have 9.75*10^-7/10^-6 = 0.975µg ZnC2O4
(*see below) at this point you could have said:
1µg = 10^-6 g therefore you have a solution of 6.29µg per litre,
155ml = 6.29*155/1000 = 0.975µg ZnC2O4</span>