The total present worth is $19,783.01
The present worth of a series of cash flow is the value of the cash flows in year 0 (today)
Cash flow in year 0 = 5330
Cash flow in year 1 = 0
Cash flow in year 2 = 0
Cash flow in year 3 = 13075 / (1.02)^3 = 12,320.86
Cash flow in year 4 = 2308 / (1.02)^4 = 2,132.24
Present worth = $19,783.01
A similar question was solved here: brainly.com/question/9641711?referrer=searchResults
Answer:
a) Ql=33120000 kJ
b) COP = 5.6
c) COPreversible= 29.3
Explanation:
a) of the attached figure we have:
HP is heat pump, W is the work supplied, Th is the higher temperature, Tl is the low temperature, Ql is heat supplied and Qh is the heat rejected. The worj is:
W=Qh-Ql
Ql=Qh-W
where W=2000 kWh
Qh=120000 kJ/h

b) The coefficient of performance is:

c) The coefficient of performance of a reversible heat pump is:

Th=20+273=293 K
Tl=10+273=283K
Replacing:

Answer:
Only Technician B is right.
Explanation:
The cylindrical braking system for a car works through the mode of pressure transmission, that is, the pressure applied to the brake pedals, is transmitted to the brake pad through the cylindrical piston.
Pressure applied on the pedal, P(pedal) = P(pad)
And the Pressure is the applied force/area for either pad or pedal. That is, P(pad) = Force(pad)/A(pad) & P(pedal) = F(pedal)/A(pedal)
If the area of piston increases, A(pad) increases and the P(pad) drops, Meaning, the pressure transmitted to the pad reduces. And for most cars, there's a pressure limit for the braking system to work.
If the A(pad) increases, P(pad) decreases and the braking force applied has to increase, to counter balance the dropping pressure and raise it.
This whole setup does not depend on the length of the braking lines; it only depends on the applied force and cross sectional Area (size) of the piston.
Viscosity isT=u(U/y) where T is shear stress & u is velocity and y is thr length
The answer is =2.57
Answer:
EH buddy use a sparkplug use a drill through a hose im from da bronx
Explanation: