Answer:
Steps:
1. Create a text file that contains blade diameter (in feet), wind velocity (in mph) and the approximate electricity generated for the year
2. load the data file for example, in matlab, use ('fileame.txt') to load the file
3. create variables from each column of your data
for example, in matlab,
x=t{1}
y=t{2}
4. plot the wind velocity and electricity generated.
plot(x, y)
5. Label the individual axis and name the graph title.
title('Graph of wind velocity vs approximate electricity generated for the year')
xlabel('wind velocity')
ylabel('approximate electricity generated for the year')
Answer:
cant see the moon sorry dude
Answer:
Explanation:
Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

Obtain the following properties at 10kPa from the table "saturated water"

Calculate the enthalpy at exit of the turbine using the energy balance equation.

Since, the process is isentropic process 

Use the isentropic relations:

Calculate the enthalpy at isentropic state 2s.

a.)
Calculate the isentropic turbine efficiency.

b.)
Find the quality of the water at state 2
since
at 10KPa <
<
at 10KPa
Therefore, state 2 is in two-phase region.

Calculate the entropy at state 2.

Calculate the rate of entropy production.

since, Q = 0

Answer:
Hello your question is incomplete attached below is the complete question
Answer : Factor of safety for point A :
i) using MSS
(Fos)MSS = 3.22
ii) using DE
(Fos)DE = 3.27
Factor of safety for point B
i) using MSS
(Fos)MSS = 3.04
ii) using DE
(Fos)DE = 3.604
Explanation:
Factor of safety for point A :
i) using MSS
(Fos)MSS = 3.22
ii) using DE
(Fos)DE = 3.27
Factor of safety for point B
i) using MSS
(Fos)MSS = 3.04
ii) using DE
(Fos)DE = 3.604
Attached below is the detailed solution