Answer:
Hello your question is incomplete attached below is the missing part and answer
options :
Effect A
Effect B
Effect C
Effect D
Effect AB
Effect AC
Effect AD
Effect BC
Effect BD
Effect CD
Answer :
A = significant
B = significant
C = Non-significant
D = Non-significant
AB = Non-significant
AC = significant
AD = Non-significant
BC = Non-significant
BD = Non-significant
CD = Non-significant
Explanation:
The dependent variable here is Time
Effect of A = significant
Effect of B = significant
Effect of C = Non-significant
Effect of D = Non-significant
Effect of AB = Non-significant
Effect of AC = significant
Effect of AD = Non-significant
Effect of BC = Non-significant
Effect of BD = Non-significant
Effect of CD = Non-significant
Answer:
a) 
b)
%
Explanation:
A) First, let's write the energy balance:
(The enthalpy of an ideal gas is just function of the temperature, not the pressure).
The Cp of air is: 1.004
And its specific R constant is 0.287
.
The only unknown from the energy balance is
, so it is possible to calculate it. The power must be negative because the work is done by the fluid, so the energy is going out from it.

B) The isentropic efficiency (e) is defined as:

Where
is the isentropic enthalpy at the exit of the turbine for the isentropic process. The only missing in the last equation is that variable, because
can be obtained from the energy balance 

An entropy change for an ideal gas with constant Cp is given by:

You can review its deduction on van Wylen 6 Edition, section 8.10.
For the isentropic process the equation is:

Applying logarithm properties:

Then,

So, now it is possible to calculate
:

Finally, the efficiency can be calculated:
%
Answer:
Codes for each of the problems are explained below
Explanation:
PROBLEM 1 IN C++:
#include<iostream>
using namespace std;
//fib function that calculate nth integer of the fibonacci sequence.
void fib(int n){
// l and r inital fibonacci values for n=1 and n=2;
int l=1,r=1,c;
//if n==1 or n==2 then print 1.
if(n==1 || n==2){
cout << 1;
return;
}
//for loop runs n-2 times and calculates nth integer of fibonacci sequence.
for(int i=0;i<n-2;i++){
c=l+r;
l=r;
r=c;
cout << "(" << i << "," << c << ") ";
}
//prints nth integer of the fibonacci sequence stored in c.
cout << "\n" << c;
}
int main(){
int n; //declared variable n
cin >> n; //inputs n to find nth integer of the fibonacci sequence.
fib(n);//calls function fib to calculate and print fibonacci number.
}
PROBLEM 2 IN PYTHON:
def fib(n):
print("fib({})".format(n), end=' ')
if n <= 1:
return n
else:
return fib(n - 1) + fib(n - 2)
if __name__ == '__main__':
n = int(input())
result = fib(n)
print()
print(result)
GPS device details are given below.
Explanation:
Even a simple GPS unit has a wide range of settings and features. Because every unit’s operation varies, this article won’t provide step-by-step details. Read the owner's manual to familiarize yourself with it..
If you’d like additional help, you can also sign up for a GPS navigation class at an REI store.
Though steps vary, all GPS receivers do the following basic functions:
Display position: A GPS tells you where you are by displaying your coordinates; it also shows your position on its base map or topo map.
Record tracks: When tracking is turned on, a GPS automatically lays down digital bread crumbs, called “track points,” at regular intervals. You use those later to retrace your steps or to evaluate the path you traveled.
Navigate point-to-point: A GPS directs you by giving you the direction and distance to a location, or “waypoint.” You can pre-mark waypoints by entering their coordinates at home. In the field you can have the unit mark a waypoint at a place you'd like to return to, such as the trailhead or your campsite. A GPS unit provides the bearing and distance “as the crow flies” to a waypoint. Because trails don’t follow a straight line, the bearing changes as you hike. The distance to travel also changes (decreasing, unless you’re heading the wrong direction) as you approach your goal.
Display trip data: This odometer-like function tells you cumulative stats like how far you’ve come and how high you’ve climbed.
GPS and your computer: GPS units come with a powerful software program that lets you manage maps, plan routes, analyze trips and more. Invest the time to learn it and to practice using all of its capabilities.
Answer: The answer is D
D.In hydraulic systems, the operating temperatures must be kept between 170�F and 180°F
Explanation:
The operating temperature for hydraulic systems is 140°F and below. Anything above this temperature is too high and will reduce the useful life of hydraulic fluid.
Most often problems associated with hydraulic systems are caused by fluid contaminated with particulate matter.