Answer:
For now the answer to this question is only for partial fraction. Find attached.
Answer:Counter,
0.799,
1.921
Explanation:
Given data




Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger
Equating Heat exchange
![m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]](https://tex.z-dn.net/?f=m_hc_%7Bph%7D%5Cleft%20%5B%20T_%7Bh_i%7D-T_%7Bh_o%7D%5Cright%20%5D%3Dm_cc_%7Bpc%7D%5Cleft%20%5B%20T_%7Bc_o%7D-T_%7Bc_i%7D%5Cright%20%5D)
=
we can see that heat capacity of hot fluid is minimum
Also from energy balance

=


NTU=1.921





Answer:
insert (array[] , value , currentsize , maxsize )
{
if maxsize <=currentsize
{
return -1
}
index = currentsize-1
while (i>=0 && array[index] > value)
{
array[index+1]=array[index]
i=i-1
}
array[i+1]=value
return 0
}
Explanation:
1: Check if array is already full, if it's full then no component may be inserted.
2: if array isn't full:
- Check parts of the array ranging from last position of range towards initial range and determine position of that initial range that is smaller than the worth to be inserted.
- Right shift every component of the array once ranging from last position up to the position larger than the position at that smaller range was known.
- assign new worth to the position that is next to the known position of initial smaller component.