I suppose it would be forest because in order to have organic matter the soil needs to be rich and fertile,therefore it is forest.
Answer:
i think its D
Explanation:
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.
Answer: <span>There are more reactants than products at equilibrium.
Explanation:
</span>1) The equilibrium constant is defined as the ratio of the constant of reaction for the forward reaction divided by the constant of reaction for the reverse reaction.
2) If the constant of reacton for the forward reaction is greater than the constant of reaction for the reverse reaction, then the equilbrium constant is greater than 1 and the equilibrium is reached at a point where there are more products than reactants.
This is not the case given that the equilibrium constant is less than 1.
3) If the constant of reaction for the forward reaction is less than the constant of reaction for the reverse reaction, then the equilibrium constant is less than 1 and at equilibrium there will be more reactants than products.
This is the case given, since the equilibrium constant is 0.123.
Therefore, the answer is: there are more reactants than products at equilibrium.
Answer:
Keq = [CO₂]/[O₂]
Explanation:
Step 1: Write the balanced equation for the reaction at equilibrium
C(s) + O₂(g) ⇄ CO₂(g)
Step 2: Write the expression for the equilibrium constant (Keq)
The equilibrium constant is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients. It only includes gases and aqueous species. The equilibrium constant for the given system is:
Keq = [CO₂]/[O₂]