The characteristic of the Bohr model that would best support his observation is this assumption: "The energy of the electron in an orbit is proportional to its distance from the nucleus. The further the electron is from the nucleus, the more energy it has." The discrete, bright, colored lines might represent the electrons and its distance from the nucleus. The lights are caused by the energy it has.
Potassium outermost electron occupy "4s" orbital
Answer:
Explanation:
heat released by the solution
= 120 x 3.18 x ( 25 - 14 )
= 4197.6 J
= 4.1976 kJ
This is the heat gain by the salt
so enthalpy change = + 4.1976 kJ
because there is increase in enthalpy
It is endothermic process .
The molar mass of monotonic Nitrogen is 14 g/mol. Since this is diatomic Nitrogen, double that to 28 g/mol.
Next, divide total mass by molar mass, 500 g / 28 g/mol, which gives <span>17.8571 moles. A mole is defined as being 6.022*10^23 molecules, so multiply moles by molecules/mol (Avogadro's number), and we finally end up with something like 1.075 * 10^25, give or take a few billion particles.</span>
Answer : Linear
Explanation : Hydrogen Cyanide (HCN) when drwan in the Lewis diagram shows carbon atom at the center with no lone electron pairs.
The carbon and nitrogen atoms are bonded through a triple bond which counts as "one electron pair".
The molecule has two electron pairs in all and appears to be linear.
Also, according to the VSEPR theory; the electron clouds on atoms around the carbon will try to repel each other.
They will get pushed apart, which gives HCN molecule a linear molecular geometry or shape.
The bond angle that is developed will be 180 degrees since it has a linear molecular geometry of HCN. The hybridisation observed in this molecule is SP.