Answer: D
Explanation: D is the most reasonable answer because it's always good to plan ahead for anything, so if you were to plan ahead for future obstacles, then you can overcome them.
Answer:
after 6 second it will stop
he travel 36 m to stop
Explanation:
given data
speed = 12 m/s
distance = 100 m
decelerates rate = 2.00 m/s²
so acceleration a = - 2.00 m/s²
to find out
how long does it take to stop and how far does he travel
solution
we will apply here first equation of motion that is
v = u + at ......1
here u is speed 12 and v is 0 because we stop finally
put here all value in equation 1
0 = 12 + (-2) t
t = 6 s
so after 6 second it will stop
and
for distance we apply equation of motion
v²-u² = 2×a×s ..........2
here v is 0 u is 12 and a is -2 and find distance s
put all value in equation 2
0-12² = 2×(-2)×s
s = 36 m
so he travel 36 m to stop
<span>3.92 m/s^2
Assuming that the local gravitational acceleration is 9.8 m/s^2, then the maximum acceleration that the truck can have is the coefficient of static friction multiplied by the local gravitational acceleration, so
0.4 * 9.8 m/s^2 = 3.92 m/s^2
If you want the more complicated answer, the normal force that the crate exerts is it's mass times the local gravitational acceleration, so
20.0 kg * 9.8 m/s^2 = 196 kg*m/s^2 = 196 N
Multiply by the coefficient of static friction, giving
196 N * 0.4 = 78.4 N
So we need to apply 78.4 N of force to start the crate moving. Let's divide by the crate's mass
78.4 N / 20.0 kg
= 78.4 kg*m/s^2 / 20.0 kg
= 3.92 m/s^2
And you get the same result.</span>
Answer:
F_Balance = 46.6 N ,m' = 4,755 kg
Explanation:
In this exercise, when the sphere is placed on the balance, it indicates the weight of the sphere, when another sphere of opposite charge is placed, they are attracted so that the balance reading decreases, resulting in
∑ F = 0
Fe –W + F_Balance = 0
F_Balance = - Fe + W
The electric force is given by Coulomb's law
Fe = k q₁ q₂ / r₂
The weight is
W = mg
Let's replace
F_Balance = mg - k q₁q₂ / r₂
Let's reduce the magnitudes to the SI system
q₁ = + 8 μC = +8 10⁻⁶ C
q₂ = - 3 μC = - 3 10⁻⁶ C
r = 0.3 m = 0.3 m
Let's calculate
F_Balance = 5 9.8 - 8.99 10⁹ 8 10⁻⁶ 3 10⁻⁶ / (0.3)²
F_Balance = 49 - 2,397
F_Balance = 46.6 N
This is the balance reading, if it is calibrated in kg, it must be divided by the value of the gravity acceleration.
Mass reading is
m' = F_Balance / g
m' = 46.6 /9.8
m' = 4,755 kg
Answer:
3ohms
Explanation:
From Ohm's Law
V = IR
V is that voltage = 3volts
I = current = 1amp
R = resistance in ohms
Putting those values into the above formula.
3volts = 1amp×R
Making R the subject
R = 3/1
R = 3ohms
The resistance of the light bulb is 3ohms.