Ek = (m*V^2) / 2 where m is mass and V is speed, then we can take this equation and manipulate it a little to isolate the speed.
Ek = mv^2 / 2 — multiply both sides by 2
2Ek = mv^2 — divide both sides by m
2Ek / m = V^2 — switch sides
V^2 = 2Ek / m — plug in values
V^2 = 2*30J / 34kg
V^2 = 60J/34kg
V^2 = 1.76 m/s — sqrt of both sides
V = sqrt(1.76)
V = 1.32m/s (roughly)
The change in momentum of an object equals the impulse applied to it
Answer:
1. all of them
2. cork and wax
3. iron, lead, and aluminum
4. none of them
Explanation:
1.Which material will displace a volume of water? all of them
When an object is introduced into a container with a volume of water, a volume of liquid equal to the volume of the object is displaced
2.Which material will displace a volume of water less than its own volume?
cork and wax
because the density of the object is less than that of the displaced liquid
3.Which material will displace a volume of water equal to its own volume?
iron, lead, and aluminum
because Arquimedes's principle: any body plunged inside a fluid in this case water experiences an ascending force called push, equivalent to the weight of the fluid removed by the body
4.Which material will displace a volume of water greater than its own volume?
None of them
<span>Every 10s 5 waves; t1 = 2s for each wave
When v = 1.5m/s, 3 waves in 10s t2 = 10 / 3s
Calculating the frequency in first case f1 = 5 / 10 = 0.5
Calculating the frequency in second case f2 = 3 / 10 = 0.3
Using the Doppler formula f = (1-v/c) f0
For the formula f = f2, v = velocity of boat= 1.5 m/s, f0 = f1, c is velocity of wave
0.3 = 0.5 x (1 - 1.5/c) => 1.5/c = 1 - 0.6 => 1.5/c = 0.4 => c = 1.5/0.4
Velocity of the wave = 3.75 m/s</span>