C, im pretty sure if im wrong my bad
Answer:
Explanation:
A 30.0g sample of O2 at standard temperature and pressure (STP) would occupy what volume in liters
PV =nRT
at STP P= 1atm. T= 273 K
n is the number of moles. O2 has a molar mass of 32.
30 gm of O2 is 30/32= 0.94 =n
PV = nRT
at STP: P= 1 atm, T=273 K, R is always 0.082 for P in atm and T in K
SO
1 X V = 0.94 X 0.082 X 273
using high school freshman algebra,
V= 0.94 X 0.082 X 273 = 21L
using high school algebra I,
V=
Answer:
2.7 g/cm³
Explanation:
Step 1: Calculate the mass of kerosene
The mass of the full beaker (mFB) is equal to the sum of the masses of the empty beaker (mEB) and the mass of the kerosene (mK).
mFB = mEB + mK
mK = mFB - mEB
mK = 60 g - 20 g = 40 g
Step 2: Calculate the density of kerosene
Density (ρ) is an intrinsic property of matter. It can be calculated as the quotient between the mass of kerosene and its volume.
ρ = m/V
ρ = 40 g/15 cm³ = 2.7 g/cm³
a single neutral atom of zinc has 30 protons
Hi There!
<span>How do the mass number and charge of a nucleus change when it emits a gamma ray?
</span><span>The charge doesn't change as a result of emitting a photon (which is what a gamma ray is). The mass does change by a small amount (due to the energy-mass equivalence relationship; a photon has no rest mass, but does have energy), but not by enough to make any real difference in the mass number.</span><span>
</span>