Answer:
b C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻
e HC₂H₃O₂ + H₂O ⇄ H₃O⁺ + C₂H₃O₂⁻
f ka<<1
g. Weak acid molecules and water molecules
Explanation:
The water molecule could act as a base and as an acid, a molecule that have this property is called as amphoteric.
b The salt NaC₂H₃O₂ is dissolved in water as Na⁺ and C₂H₃O₂⁻. The reaction of the anion with water is:
<em>C₂H₃O₂⁻ + H₂O ⇄ HC₂H₃O₂ + OH⁻</em>
Where the C₂H₃O₂⁻ is the base and water is the acid.
e. The reaction of HC₂H₃O₂ (acid) with water (base), produce:
<em>HC₂H₃O₂ + H₂O ⇄ H₃O⁺ + C₂H₃O₂⁻</em>
f. As the acetic acid (HC₂H₃O₂) is a week acid, the dissociation in C₂H₃O₂⁻ is not complete, that means that <em>ka<<1</em>
g. The ka for this reaction is 1,8x10⁻⁵, that means that there are more <em>weak acid molecules</em> (HC₂H₃O₂) than conjugate base ions. Also, the <em>water molecules </em>will be in higher proportion than hydronium ions.
I hope it helps!