Answer:
Ca(OH)2 will not precipitate because Q<Ksp
Explanation:
Ksp for Ca(OH)2 has already been stated in the question as 8.0 x 10-8mol2dm-6
The value of the reaction quotient depends heavily on the concentration of the reactants. As the initial concentration of the calcium carbide decreases considerably, the reaction quotient decreases until Q<Ksp hence the Ca(OH)2 will not precipitate from solution.
The reaction equation is:
CaC₂(s) + H₂O ⇒ Ca(OH)₂ + C₂H₂
From
Ca(OH)2= Ca2+ + 2OH-
Concentration of solution= 0.064×1/64= 1×10-3
Since [Ca2+] = 1×10-3
[OH-]= (2×10-3)^2= 4×10^-6
Hence Q= 4×10^-9
This is less than the Ksp hence the answer.
Answer:
Are transferred completely from the valence shell of an element to the other
Explanation:
Basically, to form a chemical bond, you either transfer or you share. When you share, it is a case of covalent bonding which can be in several other forms. When there is a transfer, it is a case of ionic bonding.
The basic explanation for this is that while some atoms are electronically sufficient, some are electronically deficient. This means while some atoms are having an excess number of electrons, then some are having less number of electrons.
To satisfy both parties, there must be a transfer if electrons between the two parties. While the one with the excess numbers serves as the donor, the one with insufficient number of electrons serve as the acceptor
Answer:
Oxygen is limiting reactant
Explanation:
Based on the chemical reaction:
2C2H6 + 7O2 → 6H2O + 4CO2
<em>2 mole of ethane reacts with 7 moles of oxygen</em>
<em />
For a complete reaction of 5.25 moles of ethane are required:
5.25 moles Ethane * (7mol Oxygen / 2mol Ethane) = 18.38 moles of oxygen
As there are just 15.0 moles of oxygen
<h3>Oxygen is limiting reactant</h3>
Answer:
D) With an increase in altitude, atmospheric pressure increases as well.
Explanation:
Generally when altitude increases, the value of pressure decreases. This shows that pressure is inversely proportional to altitude. For example, the higher the altitude, the lower the pressure and vice versa. At very high altitude, the number of molecules of air are smaller than the number of moles of air at very low altitude. Thus, the higher the altitude, the lower the atmospheric pressure and the lower the altitude, the higher the atmospheric pressure. Therefore, option (D) is false.
<h3><u>Answer;</u></h3>
A gas in a liquid
<h3><u>Explanation;</u></h3>
- Pressure affects the solubility of gases. According to Henry's law, the solubility of a gas in a liquid is proportional to the partial pressure of the gas above the liquid at a given temperature,
- Therefore; For the solubility of gases in liquids, as pressure increases, solubility increases. Hence pressure will have a effect on a solution with a gas in liquid.