Answer: Option (3) is the correct answer.
Explanation:
When there is a negative charge on an atom then we add the charge with the number of electrons. Whereas when there is a positive charge on an atom then we subtract the charge from the number of electrons.
Atomic number of chlorine is 17. So, number of electrons present in
is 17 + 1 = 18 electrons.
Atomic number of cobalt is 27. So, number of electrons present in
is 27 - 4 = 23 electrons.
Atomic number of iron is 26. So, number of electrons present in
is 26 - 2 = 24 electrons.
Atomic number of vanadium is 23. So, number of electrons present in V is 23 electrons.
Atomic number of scandium is 21. So, number of electrons present in
is 21 + 2 = 23 electrons.
Thus, we can conclude that out of the given species,
has the greatest number of electrons.
The wavelength and frequency of light are closely related. The higher the frequency, the shorter the wavelength. ... The equation that relates wavelength and frequency for electromagnetic waves is: λν=c where λ is the wavelength, ν is the frequency and c is the speed of light.
The balanced chemical reaction is:
2HCl + Ca = CaCl2 + H2
We are given the amount of the reactants to be used for the reaction. These values will be the starting point of our calculations.
100 g HCl ( 1 mol HCl / 36.46 g HCl ) = 2.74 mol HCl
100 g Ca ( 1 mol Ca / 40.08 g ) = 2.08 mol Ca
From the reaction, the mole ratio of the reactants is 2:1 where every 2 moles of hydrochloric acid, 1 mole of calcium is required. Therefore, the limiting reactant for this case is calcium.
Answer:
Oxidation of potassium amalgam with carbon dioxide results in the formation of potassium oxalate. Potassium is not reactive with benzene, although heavier alkali metals such as cesium react to give organometallic products.
Please Mark Brainliest If This Helped!
We have that the total enthalpy of the reaction changes with the quantity of the reactants and it is proportional to them. Also, the reverse of a reaction has the opposite enthalpy. Hence, since we need to multiply by 2, the reactants are double and thus the value of the enthalpy is 2 as big. Also, since we are using the inverse reaction, we must also invert the sign. Thus, for this reaction we must use the value H=572 kJ.