Answer:HERE IS YOUR ANSWER
THE POINTS ARE
IF WE PUT THE OBJECT BETWEEN THE FOCUS
AND THE POLE
THEN THE IMAGE FORMED WILL be MAGNIFIED
If that’s not what you are looking for, try this one:
For concave mirror the virtual image is formed when the object is kept in between the pole and the focus.
Given here the "size of the image" is twice to that of the object.
Hence, it is consider that the magnification is +2.
So, the magnification value is positive and the image formed will be "virtual and erect". Thus, the object should be kept in between the "pole and the focus" in concave mirror."
Explanation:
Given:-
- Time taken by the particle (t) = 6 s
- Average speed (v) = 40 m/s
To Find: Distance (s) travelled by the particle.
We know,
s = vt
where,
- s = Distance travelled,
- v = Speed &
- t = Time taken.
Putting the values,
s = (40 m/s)(6 s)
→ s = 240 m ...(Ans.)
Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)
Answer:
p = mv
Explanation:
The momentum of an object is given by the equation:

where
m is the mass of the object
v is the velocity
Since velocity is a vector, it follows that momentum is a vector as well, therefore it has a magnitude and a direction (the same as the velocity).
The SI unit of the momentum is 
An important law related to the momentum is the law of conservation of momentum, which states that for an isolated system (= zero net external force on it), the total momentum of the system is conserved.