Answer:
7,14545 mph and 3,1936 m/s
Explanation:
The average speed is calculated by dividing the displacement over time, then it is 26,2 miles/(3 2/3 hours), here 3 (2/3) hours is a mixed number, that represents 11/3 hours or 3,66 hours. Then the average speed is 7,14545 mph, now to turn this into meters per second, we notice as mentioned that 1 mile =1609 meters and 1 hour=3600 seconds. Then 7,14545 miles/hour* (1 hour/3600 seconds) * (1609 meters/1 mile)=3,1936 m/s
Answer:
c. The temperature at which a glass transforms from a solid to liquid.
Explanation:
The glass transition temperature is said to be a temperature range when a polymer structure transition from a glass or hardy(solid) material to a rubber like or viscous liquid material.
The glass transition temperature is an important property that is critical in product design.
Answer:
D
Explanation:
She says that the object of the experiment is to see how far the string stretches given a mass attached to the string.
The only thing that is at issue is either the mass or the amount the string stretches.
Nothing else matters.
The dependent variable therefore is the amount the string stretches. So the last choice is the answer.
Answer:
It is possible because, the TV broadcast audio and video signals in radio frequency which travels at the speed of light while the audio signals travel to those present in the stadium at the speed of sound which is over eight hundred thousand times slower than the speed of light
Explanation:
It is possible because of the following;
1. TV signals from the camera (including the captured sound) very close to the field of play are transmitted through the radio frequency bands and as such are a form of electromagnetic radiation that travels at the speed of light which is about 300,000 km/second
It will therefore, take 1 second for a sound of the game to reach someone located at 300,000,000 meters watching a live televised game
2. The speed of sound is about 343 m/second and it therefore takes up to 2 seconds for a sound to reach someone 686 meters away from the ball in the stadium.
Answer:
It corresponds to 1mm-10 mm range.
Explanation:
- Electromagnetic waves (such as the millimeter-wave radiation) travel at the speed of light, which is 3*10⁸ m/s in free space.
- As in any wave, there exists a fixed relationship between speed, frequency and wavelength, as follows:

- Replacing v= c=3*10⁸ m/s, and the extreme values of f (which are givens), in (1) and solving for λ, we can get the free-space wavelengths that correspond to the 30-300 GHz range, as follows:

