The answer is Weathering since its nature breaking down the concrete.
Answer:
The answer is: To accelerate an object <u>the force applied to the object</u> has to increase.
Explanation:
the acceleration of an object <u>increases with increased force</u> and <u>decreases with increased mass.</u>
Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
True.
Conductivity is the ability to transmit heat, electricity or sound. Conductivity is a physical property.
A physical property is one which can be measured or observed without changing the composition or identity of a the substance.
Conductivity is a physical property because the composition of the substance does not change.
A copper wire is still a copper wire when it is conducting electricity. Like wise, an aluminum rod is still an aluminum rod when heated. It is conducting heat but the heat does not change it, it is still an aluminum rod during the whole process.
Answer:
c = 894.90 m/s
Explanation:
Given data:
Frequency of wave = 471 Hz
Wavelength of wave = 1.9 m
Speed of wave = ?
Solution:
Formula:
Speed of wave = frequency × wavelength
c = f×λ
c = 471 Hz × 1.9 m
Hz = s⁻¹
c = 471s⁻¹ × 1.9 m
c = 894.90 m/s
The speed of wave is 894.90 m/s.