<span>If 1 eighth equals 1 billion 7 eighth equals 7 billion.
The asker of the second question needs a tutorial in radiometric dating. There is little likelihood that the daughter isotope has the same atomic weight as the parent isotope. To measure the mass isotopes doesn't tell us how many atoms of each exist. To get around that let's pretend — which will likely serve the purpose ineptly intended — that the values give an the particle ratio, 125:875.
The original parent isotope count was 125 + 875 = 1000. The remaining parent isotope is 125/1000 or 1/8. 1/8 = (1/2)^h, where h is the number of half-lives.
h = log (1/8) ÷ log(1/2) = 3
And 3 half-lives • 150,000 years/half-life = 450,000 years.</span>
Answer:
The Force between the two charges is an attractive force of 16,000N
Explanation:
Expression for the electric force between the two charges is given by
F = (k*q1*q2) / r^2
Here, k = constant = 9 x 10^9 N*m^2 / C^2
q1 = - 2.0x10^-4C
q2 = + 8.0x10^-4C
r = 0.30 m
Substitute the given values in the above expression -
One charge is + and the other is a -, therefore the net force is an attractive force (opposites atract)
The attraction force is:
F= 9.0x10^9 * 2.0x10^-4 *8.0x10^-4 N/ 0.30^2
F= 16,000N
Answer:12,352 cal
Explanation:
Given
to change 16 gm ice at 
First we need to take ice to
then change its state to water and then raises water temperature from 0 to
.
After it change water phase to steam and then raise its temperature to 
+
Q=12,352 cal