It would have to be 36,719 Km high in order to be to be in geosynchronous orbit.
To find the answer, we need to know about the third law of Kepler.
<h3>What's the Kepler's third law?</h3>
- It states that the square of the time period of orbiting planet or satellite is directly proportional to the cube of the radius of the orbit.
- Mathematically, T²∝a³
<h3>What's the radius of geosynchronous orbit, if the time period and altitude of ISS are 90 minutes and 409 km respectively?</h3>
- The time period of geosynchronous orbit is 24 hours or 1440 minutes.
- As the Earth's radius is 6371 Km, so radius of the ISS orbit= 6371km + 409 km = 6780km.
- If T1 and T2 are time period of geosynchronous orbit and ISS orbit respectively, a1 and a2 are radius of geosynchronous orbit and ISS orbit, as per third law of Kepler, (T1/T2)² = (a1/a2)³
- a1= (T1/T2)⅔×a2
= (1440/90)⅔×6780
= 43,090 km
- Altitude of geosynchronous orbit = 43,090 - 6371= 36,719 km
Thus, we can conclude that the altitude of geosynchronous orbit is 36,719km.
Learn more about the Kepler's third law here:
brainly.com/question/16705471
#SPJ4

Explanation:
Newton's 2nd Law can be expressed in terms of the object's momentum, in this case the expelled exhaust gases, as
(1)
Assuming that the velocity remains constant then

Solving for
we get

Before we plug in the given values, we need to convert them first to their appropriate units:
The thrust <em>F</em><em> </em> is

The exhaust rate dm/dt is


Therefore, the velocity at which the exhaust gases exit the engines is


When evaporation occurs liquid absorbs heat from the surroundings to get converted to its vapour form as a result, there is an overall decrease in the heat leading to cooling of the liquid.
Hope that this was helpful :)
Answer:
not really the same question but it has the same answers lol it's confirmation bias
Explanation:
The formula for momentum is p=mv where p is the momentum (kgms-1), m is the mass (kg) and v is the velocity (ms-1). So, to work out the momentum, we just multiply these numbers together and work out which is the largest.
1) 12kgms-1
2) 10kgms-1
3) 27kgms-1
4) 16kgms-1
Therefore the object with the greatest momentum is 3 - a 9kg mass moving at 3m/s