Answer
given,
flow rate = p = 660 kg/m³
outer radius = 2.8 cm
P₁ - P₂ = 1.20 k Pa
inlet radius = 1.40 cm
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₁² v₂



Applying Bernoulli's equation





v₂ = 1.97 m/s
b) fluid flow rate
Q = A₂ V₂
Q = π (0.014)² x 1.97
Q = 1.21 x 10⁻³ m³/s
To find
we need to use vector addition and use the x and y components. First we subtract vector 2 from vector 5 which results in a vector with a length of 3 pointing directly east, then we use the distance formula to find the length of the net force
which gives
. We now have a magnitude but we also need a direction, since vector 4 and vector 5 are perpendicular. Using
where tan^-1(y/x) we get an angle of 53 degrees. The resultant force vector is 5 distance with an angle of 53 degrees north east.
Answer: y = 2.4×10^-6m or y= 2.4μm
Explanation: The formulae for the distance between the central bright fringe to any other fringe in pattern is given as
y = R×mλ/d
Where y = distance between nth fringe and Central bright spot fringe.
m = position of fringe = 4
λ = wavelength of light= 600nm = 600×10^-9 m
d = distance between slits = 1.50×10^-5m
R = distance between slit and screen = 2m
y = 2 × 4 × 600×10^-9/2
y = 4800×10^-9/2
y = 2400 × 10^-9
y = 2.4×10^-6m or y= 2.4μm